File size: 5,551 Bytes
18f72bc
9a3ef7c
 
 
 
 
 
 
 
 
18f72bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4b64d6
18f72bc
e4b64d6
18f72bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3ef7c
 
18f72bc
e4b64d6
18f72bc
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3ef7c
 
18f72bc
 
 
9a3ef7c
18f72bc
 
9a3ef7c
 
 
 
18f72bc
30162a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe8429
 
18f72bc
7c4228c
2fe8429
61c45b6
 
 
 
 
 
 
 
 
 
18a36e5
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
language:
- ar
task_categories:
- conversational
- text-generation
- text2text-generation
- translation
- summarization
pretty_name: MAD
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: GenId
    dtype: int64
  - name: SubId
    dtype: int64
  - name: DatasetName
    dtype: string
  - name: DatasetLink
    dtype: string
  - name: Text
    dtype: string
  - name: MetaData
    struct:
    - name: AboutAuthor
      dtype: string
    - name: AboutBook
      dtype: string
    - name: Author
      dtype: string
    - name: AuthorName
      dtype: string
    - name: BookLink
      dtype: string
    - name: BookName
      dtype: string
    - name: ChapterLink
      dtype: string
    - name: ChapterName
      dtype: string
    - name: Tags
      dtype: float64
    - name: __index_level_0__
      dtype: float64
    - name: created_date
      dtype: string
    - name: deleted
      dtype: bool
    - name: detoxify
      dtype: 'null'
    - name: emojis
      struct:
      - name: count
        sequence: int32
      - name: name
        sequence: string
    - name: id
      dtype: string
    - name: labels
      struct:
      - name: count
        sequence: int32
      - name: name
        sequence: string
      - name: value
        sequence: float64
    - name: lang
      dtype: string
    - name: message_id
      dtype: string
    - name: message_tree_id
      dtype: string
    - name: model_name
      dtype: 'null'
    - name: parent_id
      dtype: string
    - name: rank
      dtype: float64
    - name: resource_name
      dtype: string
    - name: review_count
      dtype: float64
    - name: review_result
      dtype: bool
    - name: role
      dtype: string
    - name: synthetic
      dtype: bool
    - name: title
      dtype: string
    - name: tree_state
      dtype: string
    - name: url
      dtype: string
    - name: user_id
      dtype: string
    - name: verses_keys
      dtype: string
  - name: ConcatenatedText
    dtype: int64
  - name: __index_level_0__
    dtype: float64
  splits:
  - name: train
    num_bytes: 2121243070
    num_examples: 187510
  download_size: 841102063
  dataset_size: 2121243070
---
# Dataset Card for "Mixed-Arabic-Dataset"

## Mixed Arabic Datasets (MAD)

The Mixed Arabic Datasets (MAD) project provides a comprehensive collection of diverse Arabic-language datasets, sourced from various repositories, platforms, and domains. These datasets cover a wide range of text types, including books, articles, Wikipedia content, stories, and more.

### MAD Repo vs. MAD Main

#### MAD Repo
- **Versatility**: In the MAD Repository (MAD Repo), datasets are made available in their original, native form. Researchers and practitioners can selectively download specific datasets that align with their specific interests or requirements.
- **Independent Access**: Each dataset is self-contained, enabling users to work with individual datasets independently, allowing for focused analyses and experiments.

#### MAD Main or simply MAD
- **Unified Dataframe**: MAD Main represents a harmonized and unified dataframe, incorporating all datasets from the MAD Repository. It provides a seamless and consolidated view of the entire MAD collection, making it convenient for comprehensive analyses and applications.
- **Holistic Perspective**: Researchers can access a broad spectrum of Arabic-language content within a single dataframe, promoting holistic exploration and insights across diverse text sources.

### Why MAD Main?
- **Efficiency**: Working with MAD Main streamlines the data acquisition process by consolidating multiple datasets into one structured dataframe. This is particularly beneficial for large-scale projects or studies requiring diverse data sources.
- **Interoperability**: With MAD Main, the datasets are integrated into a standardized format, enhancing interoperability and compatibility with a wide range of data processing and analysis tools.
- **Meta-Analysis**: Researchers can conduct comprehensive analyses, such as cross-domain studies, trend analyses, or comparative studies, by leveraging the combined richness of all MAD datasets.

### Getting Started
- To access individual datasets in their original form, refer to the MAD Repository ([Link to MAD Repo](https://huggingface.co/datasets/M-A-D/Mixed-Arabic-Datasets-Repo)).
- For a unified view of all datasets, conveniently organized in a dataframe, you are here in the right place.
```python
from datasets import load_dataset

dataset = load_dataset("M-A-D/Mixed-Arabic-Dataset-Main")
```

### Join Us on Discord

For discussions, contributions, and community interactions, join us on Discord! [![Discord](https://img.shields.io/discord/798499298231726101?label=Join%20us%20on%20Discord&logo=discord&logoColor=white&style=for-the-badge)](https://discord.gg/2NpJ9JGm)

### How to Contribute

Want to contribute to the Mixed Arabic Datasets project? Follow our comprehensive guide on Google Colab for step-by-step instructions: [Contribution Guide](https://colab.research.google.com/drive/1w7_7lL6w7nM9DcDmTZe1Vfiwkio6SA-w?usp=sharing).

**Note**: If you'd like to test a contribution before submitting it, feel free to do so on the [MAD Test Dataset](https://huggingface.co/datasets/M-A-D/Mixed-Arabic-Dataset-test).

## Citation

```
@dataset{ 
title = {Mixed Arabic Datasets (MAD)},
author = {MAD Community},
howpublished = {Dataset},
url = {https://huggingface.co/datasets/M-A-D/Mixed-Arabic-Datasets-Repo},
year = {2023},
}
```