File size: 8,145 Bytes
a2b1ada 9873114 34b329a 9873114 a2b1ada 9873114 34b329a a2b1ada da0d760 e5879b5 a2b1ada da0d760 a2b1ada da0d760 b4507b7 7e41895 1941bef b4507b7 d8d715b f845479 d8d715b 1941bef d8d715b b4507b7 da0d760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
dataset_info:
- config_name: Ara--MBZUAI--Bactrian-X
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: id
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 66093524
num_examples: 67017
download_size: 33063779
dataset_size: 66093524
- config_name: Ara--OpenAssistant--oasst1
features:
- name: message_id
dtype: string
- name: parent_id
dtype: string
- name: user_id
dtype: string
- name: created_date
dtype: string
- name: text
dtype: string
- name: role
dtype: string
- name: lang
dtype: string
- name: review_count
dtype: int32
- name: review_result
dtype: bool
- name: deleted
dtype: bool
- name: rank
dtype: float64
- name: synthetic
dtype: bool
- name: model_name
dtype: 'null'
- name: detoxify
dtype: 'null'
- name: message_tree_id
dtype: string
- name: tree_state
dtype: string
- name: emojis
struct:
- name: count
sequence: int32
- name: name
sequence: string
- name: labels
struct:
- name: count
sequence: int32
- name: name
sequence: string
- name: value
sequence: float64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 58168
num_examples: 56
download_size: 30984
dataset_size: 58168
- config_name: Ary--AbderrahmanSkiredj1--Darija-Wikipedia
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 8104410
num_examples: 4862
download_size: 3229966
dataset_size: 8104410
configs:
- config_name: Ara--MBZUAI--Bactrian-X
data_files:
- split: train
path: Ara--MBZUAI--Bactrian-X/train-*
- config_name: Ara--OpenAssistant--oasst1
data_files:
- split: train
path: Ara--OpenAssistant--oasst1/train-*
- config_name: Ary--AbderrahmanSkiredj1--Darija-Wikipedia
data_files:
- split: train
path: Ary--AbderrahmanSkiredj1--Darija-Wikipedia/train-*
language:
- ar
pretty_name: Mixed Arabic Datasets (MAD) Corpus
size_categories:
- 1B<n<10B
task_categories:
- text-classification
- question-answering
- translation
- summarization
- conversational
- text-generation
- text2text-generation
- fill-mask
---
# Dataset Card for "Mixed Arabic Datasets (MAD) Corpus"
**The Mixed Arabic Datasets Corpus : A Community-Driven Collection of Diverse Arabic Texts**
## Dataset Description
The Mixed Arabic Datasets (MAD) presents a dynamic compilation of diverse Arabic texts sourced from various online platforms and datasets. It addresses a critical challenge faced by researchers, linguists, and language enthusiasts: the fragmentation of Arabic language datasets across the Internet. With MAD, we are trying to centralize these dispersed resources into a single, comprehensive repository.
Encompassing a wide spectrum of content, ranging from social media conversations to literary masterpieces, MAD captures the rich tapestry of Arabic communication, including both standard Arabic and regional dialects.
This corpus offers comprehensive insights into the linguistic diversity and cultural nuances of Arabic expression.
## Usage
If you want to use this dataset you pick one among the available configs:
['Ara--MBZUAI--Bactrian-X',
'Ara--OpenAssistant--oasst1',
'Ary--AbderrahmanSkiredj1--Darija-Wikipedia']
Example of usage:
```python
dataset = load_dataset('mixed-arabic-datasets', 'Ara--MBZUAI--Bactrian-X')
```
If you loaded multiple datasets and wanted to merge them together then you can simply laverage `concatenate_datasets()` from `datasets`
```pyhton
dataset3 = concatenate_datasets([dataset1['train'], dataset2['train']])
```
Note : proccess the datasets before merging in order to make sure you have a new dataset that is consistent
## Dataset Details
- **Homepage:** [https://huggingface.co/datasets/Ali-C137/Mixed-Arabic-Datasets](https://huggingface.co/datasets/Ali-C137/Mixed-Arabic-Datasets)
- **Author:** Elfilali Ali
- **Email:** ali.elfilali00@gmail.com, alielfilali0909@gmail.com
- **GitHub Profile:** [https://github.com/alielfilali01](https://github.com/alielfilali01)
- **LinkedIn Profile:** [https://www.linkedin.com/in/alielfilali01/](https://www.linkedin.com/in/alielfilali01/)
## Dataset Size
The Mixed Arabic Datasets (MAD) is a dynamic and evolving collection, with its size fluctuating as new datasets are added or removed. As MAD continuously expands, it becomes a living resource that adapts to the ever-changing landscape of Arabic language datasets.
**Dataset List**
MAD draws from a diverse array of sources, each contributing to its richness and breadth. While the collection is constantly evolving, some of the datasets that are poised to join MAD in the near future include:
- [✔] OpenAssistant/oasst1 (ar portion) : [Dataset Link](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [✔] MBZUAI/Bactrian-X (ar portion) : [Dataset Link](https://huggingface.co/datasets/MBZUAI/Bactrian-X/viewer/ar/train)
- [✔] AbderrahmanSkiredj1/Darija-Wikipedia : [Dataset Link](https://huggingface.co/datasets/AbderrahmanSkiredj1/moroccan_darija_wikipedia_dataset)
- [] Pain/ArabicTweets : [Dataset Link](https://huggingface.co/datasets/pain/Arabic-Tweets)
- [] Abu-El-Khair Corpus : [Dataset Link](https://huggingface.co/datasets/arabic_billion_words)
- [] QuranExe : [Dataset Link](https://huggingface.co/datasets/mustapha/QuranExe)
- [] MNAD : [Dataset Link](https://huggingface.co/datasets/J-Mourad/MNAD.v1)
- [] IADD : [Dataset Link](https://raw.githubusercontent.com/JihadZa/IADD/main/IADD.json)
- [] OSIAN : [Dataset Link](https://wortschatz.uni-leipzig.de/en/download/Arabic#ara-tn_newscrawl-OSIAN_2018)
- [] MAC corpus : [Dataset Link](https://raw.githubusercontent.com/LeMGarouani/MAC/main/MAC%20corpus.csv)
- [] Goud.ma-Sum : [Dataset Link](https://huggingface.co/datasets/Goud/Goud-sum)
- [] SaudiNewsNet : [Dataset Link](https://huggingface.co/datasets/saudinewsnet)
- [] Hindawi-Books-dataset : [Dataset Link](https://huggingface.co/datasets/Ali-C137/Hindawi-Books-dataset)
- [] Miracl : [Dataset Link](https://huggingface.co/datasets/miracl/miracl)
- [] CardiffNLP/TweetSentimentMulti : [Dataset Link](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)
- [] OSCAR-2301 : [Dataset Link](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301/viewer/ar/train)
- [] mc4 : [Dataset Link](https://huggingface.co/datasets/mc4/viewer/ar/train)
- [] Wikipedia : [Dataset Link](https://huggingface.co/datasets/wikipedia)
- [] Muennighoff/xP3x : [Dataset Link](https://huggingface.co/datasets/Muennighoff/xP3x)
- [] Ai_Society : [Dataset Link](https://huggingface.co/datasets/camel-ai/ai_society_translated)
## Potential Use Cases
The Mixed Arabic Datasets (MAD) holds the potential to catalyze a multitude of groundbreaking applications:
- **Linguistic Analysis:** Employ MAD to conduct in-depth linguistic studies, exploring dialectal variances, language evolution, and grammatical structures.
- **Topic Modeling:** Dive into diverse themes and subjects through the extensive collection, revealing insights into emerging trends and prevalent topics.
- **Sentiment Understanding:** Decode sentiments spanning Arabic dialects, revealing cultural nuances and emotional dynamics.
- **Sociocultural Research:** Embark on a sociolinguistic journey, unraveling the intricate connection between language, culture, and societal shifts.
## Dataset Access
MAD's access mechanism is unique: while it doesn't carry a general license itself, each constituent dataset within the corpus retains its individual license. By accessing the dataset details through the provided links in the "Dataset List" section above, users can understand the specific licensing terms for each dataset.
## Citation
Showcase your commitment to collaboration and linguistic exploration by referencing the MAD collection in your research:
```
@dataset{
title = {Mixed Arabic Datasets (MAD)},
author = {Elfilali Ali},
howpublished = {Dataset},
url = {https://huggingface.co/datasets/Ali-C137/Mixed-Arabic-Datasets},
year = {2023},
}
``` |