File size: 8,145 Bytes
a2b1ada
 
9873114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34b329a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9873114
a2b1ada
 
 
 
 
 
 
 
 
 
9873114
 
 
 
34b329a
 
 
 
a2b1ada
 
 
 
da0d760
 
 
 
 
e5879b5
 
 
 
 
 
 
 
 
a2b1ada
da0d760
a2b1ada
da0d760
 
 
 
 
 
 
 
 
 
b4507b7
7e41895
 
 
 
1941bef
b4507b7
d8d715b
 
 
 
f845479
d8d715b
1941bef
d8d715b
b4507b7
 
da0d760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
dataset_info:
- config_name: Ara--MBZUAI--Bactrian-X
  features:
  - name: instruction
    dtype: string
  - name: input
    dtype: string
  - name: id
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 66093524
    num_examples: 67017
  download_size: 33063779
  dataset_size: 66093524
- config_name: Ara--OpenAssistant--oasst1
  features:
  - name: message_id
    dtype: string
  - name: parent_id
    dtype: string
  - name: user_id
    dtype: string
  - name: created_date
    dtype: string
  - name: text
    dtype: string
  - name: role
    dtype: string
  - name: lang
    dtype: string
  - name: review_count
    dtype: int32
  - name: review_result
    dtype: bool
  - name: deleted
    dtype: bool
  - name: rank
    dtype: float64
  - name: synthetic
    dtype: bool
  - name: model_name
    dtype: 'null'
  - name: detoxify
    dtype: 'null'
  - name: message_tree_id
    dtype: string
  - name: tree_state
    dtype: string
  - name: emojis
    struct:
    - name: count
      sequence: int32
    - name: name
      sequence: string
  - name: labels
    struct:
    - name: count
      sequence: int32
    - name: name
      sequence: string
    - name: value
      sequence: float64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 58168
    num_examples: 56
  download_size: 30984
  dataset_size: 58168
- config_name: Ary--AbderrahmanSkiredj1--Darija-Wikipedia
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 8104410
    num_examples: 4862
  download_size: 3229966
  dataset_size: 8104410
configs:
- config_name: Ara--MBZUAI--Bactrian-X
  data_files:
  - split: train
    path: Ara--MBZUAI--Bactrian-X/train-*
- config_name: Ara--OpenAssistant--oasst1
  data_files:
  - split: train
    path: Ara--OpenAssistant--oasst1/train-*
- config_name: Ary--AbderrahmanSkiredj1--Darija-Wikipedia
  data_files:
  - split: train
    path: Ary--AbderrahmanSkiredj1--Darija-Wikipedia/train-*
language:
- ar
pretty_name: Mixed Arabic Datasets (MAD) Corpus
size_categories:
- 1B<n<10B
task_categories:
- text-classification
- question-answering
- translation
- summarization
- conversational
- text-generation
- text2text-generation
- fill-mask
---
# Dataset Card for "Mixed Arabic Datasets (MAD) Corpus"

**The Mixed Arabic Datasets Corpus : A Community-Driven Collection of Diverse Arabic Texts**

## Dataset Description

The Mixed Arabic Datasets (MAD) presents a dynamic compilation of diverse Arabic texts sourced from various online platforms and datasets. It addresses a critical challenge faced by researchers, linguists, and language enthusiasts: the fragmentation of Arabic language datasets across the Internet. With MAD, we are trying to centralize these dispersed resources into a single, comprehensive repository.

Encompassing a wide spectrum of content, ranging from social media conversations to literary masterpieces, MAD captures the rich tapestry of Arabic communication, including both standard Arabic and regional dialects.

This corpus offers comprehensive insights into the linguistic diversity and cultural nuances of Arabic expression.

## Usage 
If you want to use this dataset you pick one among the available configs:

['Ara--MBZUAI--Bactrian-X', 
'Ara--OpenAssistant--oasst1', 
'Ary--AbderrahmanSkiredj1--Darija-Wikipedia']

Example of usage:
```python
dataset = load_dataset('mixed-arabic-datasets', 'Ara--MBZUAI--Bactrian-X')
```
If you loaded multiple datasets and wanted to merge them together then you can simply laverage `concatenate_datasets()` from `datasets`
```pyhton
dataset3 = concatenate_datasets([dataset1['train'], dataset2['train']])
```
Note : proccess the datasets before merging in order to make sure you have a new dataset that is consistent

## Dataset Details

- **Homepage:** [https://huggingface.co/datasets/Ali-C137/Mixed-Arabic-Datasets](https://huggingface.co/datasets/Ali-C137/Mixed-Arabic-Datasets)
- **Author:** Elfilali Ali
- **Email:** ali.elfilali00@gmail.com, alielfilali0909@gmail.com
- **GitHub Profile:** [https://github.com/alielfilali01](https://github.com/alielfilali01)
- **LinkedIn Profile:** [https://www.linkedin.com/in/alielfilali01/](https://www.linkedin.com/in/alielfilali01/)

## Dataset Size

The Mixed Arabic Datasets (MAD) is a dynamic and evolving collection, with its size fluctuating as new datasets are added or removed. As MAD continuously expands, it becomes a living resource that adapts to the ever-changing landscape of Arabic language datasets.

**Dataset List**

MAD draws from a diverse array of sources, each contributing to its richness and breadth. While the collection is constantly evolving, some of the datasets that are poised to join MAD in the near future include:

- [] OpenAssistant/oasst1 (ar portion) : [Dataset Link](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [] MBZUAI/Bactrian-X (ar portion) : [Dataset Link](https://huggingface.co/datasets/MBZUAI/Bactrian-X/viewer/ar/train)
- [] AbderrahmanSkiredj1/Darija-Wikipedia : [Dataset Link](https://huggingface.co/datasets/AbderrahmanSkiredj1/moroccan_darija_wikipedia_dataset)
- [] Pain/ArabicTweets : [Dataset Link](https://huggingface.co/datasets/pain/Arabic-Tweets)
- [] Abu-El-Khair Corpus : [Dataset Link](https://huggingface.co/datasets/arabic_billion_words)
- [] QuranExe : [Dataset Link](https://huggingface.co/datasets/mustapha/QuranExe)
- [] MNAD : [Dataset Link](https://huggingface.co/datasets/J-Mourad/MNAD.v1)
- [] IADD : [Dataset Link](https://raw.githubusercontent.com/JihadZa/IADD/main/IADD.json)
- [] OSIAN : [Dataset Link](https://wortschatz.uni-leipzig.de/en/download/Arabic#ara-tn_newscrawl-OSIAN_2018)
- [] MAC corpus : [Dataset Link](https://raw.githubusercontent.com/LeMGarouani/MAC/main/MAC%20corpus.csv)
- [] Goud.ma-Sum : [Dataset Link](https://huggingface.co/datasets/Goud/Goud-sum)
- [] SaudiNewsNet : [Dataset Link](https://huggingface.co/datasets/saudinewsnet)
- [] Hindawi-Books-dataset : [Dataset Link](https://huggingface.co/datasets/Ali-C137/Hindawi-Books-dataset)
- [] Miracl : [Dataset Link](https://huggingface.co/datasets/miracl/miracl)
- [] CardiffNLP/TweetSentimentMulti : [Dataset Link](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)
- [] OSCAR-2301 : [Dataset Link](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301/viewer/ar/train)
- [] mc4 : [Dataset Link](https://huggingface.co/datasets/mc4/viewer/ar/train)
- [] Wikipedia : [Dataset Link](https://huggingface.co/datasets/wikipedia)
- [] Muennighoff/xP3x : [Dataset Link](https://huggingface.co/datasets/Muennighoff/xP3x)
- [] Ai_Society : [Dataset Link](https://huggingface.co/datasets/camel-ai/ai_society_translated)

## Potential Use Cases

The Mixed Arabic Datasets (MAD) holds the potential to catalyze a multitude of groundbreaking applications:

- **Linguistic Analysis:** Employ MAD to conduct in-depth linguistic studies, exploring dialectal variances, language evolution, and grammatical structures.
- **Topic Modeling:** Dive into diverse themes and subjects through the extensive collection, revealing insights into emerging trends and prevalent topics.
- **Sentiment Understanding:** Decode sentiments spanning Arabic dialects, revealing cultural nuances and emotional dynamics.
- **Sociocultural Research:** Embark on a sociolinguistic journey, unraveling the intricate connection between language, culture, and societal shifts.

## Dataset Access

MAD's access mechanism is unique: while it doesn't carry a general license itself, each constituent dataset within the corpus retains its individual license. By accessing the dataset details through the provided links in the "Dataset List" section above, users can understand the specific licensing terms for each dataset.

## Citation

Showcase your commitment to collaboration and linguistic exploration by referencing the MAD collection in your research:

```
@dataset{ 
title = {Mixed Arabic Datasets (MAD)},
author = {Elfilali Ali},
howpublished = {Dataset},
url = {https://huggingface.co/datasets/Ali-C137/Mixed-Arabic-Datasets},
year = {2023},
}
```