|
""" |
|
https://github.com/xingyizhou/CenterTrack |
|
Modified by Xiaoyu Zhao |
|
|
|
https://github.com/xingyizhou/CenterTrack/blob/master/src/tools/convert_mot_to_coco.py |
|
|
|
There are extra many convert_X_to_coco.py |
|
|
|
https://cocodataset.org/#format-data |
|
""" |
|
import os |
|
import numpy as np |
|
import json |
|
import cv2 |
|
from tqdm import tqdm |
|
|
|
DATA_PATH = "PATH/TO/sportsmot" |
|
OUT_PATH = os.path.join(DATA_PATH, "annotations") |
|
os.makedirs(OUT_PATH) |
|
SPLITS = ["train", "val", "test"] |
|
HALF_VIDEO = False |
|
CREATE_SPLITTED_ANN = True |
|
USE_DET = False |
|
CREATE_SPLITTED_DET = False |
|
|
|
for split in SPLITS: |
|
data_path = os.path.join(DATA_PATH, split) |
|
out_path = os.path.join(OUT_PATH, "{}.json".format(split)) |
|
out = { |
|
"images": [], |
|
"annotations": [], |
|
"videos": [], |
|
"categories": [{ |
|
"id": 1, |
|
"name": "pedestrian" |
|
}] |
|
} |
|
video_list = os.listdir(data_path) |
|
image_cnt = 0 |
|
ann_cnt = 0 |
|
video_cnt = 0 |
|
for seq in tqdm(sorted(video_list)): |
|
if ".DS_Store" in seq: |
|
continue |
|
video_cnt += 1 |
|
out["videos"].append({"id": video_cnt, "file_name": seq}) |
|
seq_path = os.path.join(data_path, seq) |
|
img_path = os.path.join(seq_path, "img1") |
|
ann_path = os.path.join(seq_path, "gt/gt.txt") |
|
images = os.listdir(img_path) |
|
num_images = len([image for image in images |
|
if "jpg" in image]) |
|
|
|
if HALF_VIDEO and ("half" in split): |
|
image_range = [0, num_images // 2] if "train" in split else \ |
|
[num_images // 2 + 1, num_images - 1] |
|
else: |
|
image_range = [0, num_images - 1] |
|
|
|
for i in range(num_images): |
|
if i < image_range[0] or i > image_range[1]: |
|
continue |
|
img = cv2.imread( |
|
os.path.join(data_path, |
|
"{}/img1/{:06d}.jpg".format(seq, i + 1))) |
|
height, width = img.shape[:2] |
|
image_info = { |
|
"file_name": "{}/img1/{:06d}.jpg".format(seq, |
|
i + 1), |
|
"id": |
|
image_cnt + i + 1, |
|
"frame_id": i + 1 - image_range[ |
|
0], |
|
"prev_image_id": image_cnt + |
|
i if i > 0 else -1, |
|
"next_image_id": |
|
image_cnt + i + 2 if i < num_images - 1 else -1, |
|
"video_id": video_cnt, |
|
"height": height, |
|
"width": width |
|
} |
|
out["images"].append(image_info) |
|
print("{}: {} images".format(seq, num_images)) |
|
if split != "test": |
|
det_path = os.path.join(seq_path, "det/det.txt") |
|
anns = np.loadtxt(ann_path, dtype=np.float32, delimiter=",") |
|
if USE_DET: |
|
dets = np.loadtxt(det_path, dtype=np.float32, delimiter=",") |
|
if CREATE_SPLITTED_ANN and ("half" in split): |
|
anns_out = np.array([ |
|
anns[i] for i in range(anns.shape[0]) |
|
if int(anns[i][0]) - 1 >= image_range[0] |
|
and int(anns[i][0]) - 1 <= image_range[1] |
|
], np.float32) |
|
anns_out[:, 0] -= image_range[0] |
|
gt_out = os.path.join(seq_path, "gt/gt_{}.txt".format(split)) |
|
fout = open(gt_out, "w") |
|
for o in anns_out: |
|
fout.write( |
|
"{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:.6f}\n". |
|
format(int(o[0]), int(o[1]), int(o[2]), int(o[3]), |
|
int(o[4]), int(o[5]), int(o[6]), int(o[7]), |
|
o[8])) |
|
fout.close() |
|
if CREATE_SPLITTED_DET and ("half" in split) and USE_DET: |
|
dets_out = np.array([ |
|
dets[i] for i in range(dets.shape[0]) |
|
if int(dets[i][0]) - 1 >= image_range[0] |
|
and int(dets[i][0]) - 1 <= image_range[1] |
|
], np.float32) |
|
dets_out[:, 0] -= image_range[0] |
|
det_out = os.path.join(seq_path, |
|
"det/det_{}.txt".format(split)) |
|
dout = open(det_out, "w") |
|
for o in dets_out: |
|
dout.write( |
|
"{:d},{:d},{:.1f},{:.1f},{:.1f},{:.1f},{:.6f}\n". |
|
format(int(o[0]), int(o[1]), float(o[2]), float(o[3]), |
|
float(o[4]), float(o[5]), float(o[6]))) |
|
dout.close() |
|
|
|
print("{} ann images".format(int(anns[:, 0].max()))) |
|
for i in range(anns.shape[0]): |
|
frame_id = int(anns[i][0]) |
|
if frame_id - 1 < image_range[0] or frame_id - 1 > image_range[ |
|
1]: |
|
continue |
|
track_id = int(anns[i][1]) |
|
cat_id = int(anns[i][7]) |
|
ann_cnt += 1 |
|
if not ("15" in DATA_PATH): |
|
if not (float(anns[i][8]) >= 0.25): |
|
continue |
|
if not (int(anns[i][6]) == 1): |
|
continue |
|
if int(anns[i][7]) in [3, 4, 5, 6, 9, 10, |
|
11]: |
|
continue |
|
if int(anns[i][7]) in [2, 7, 8, 12]: |
|
category_id = -1 |
|
else: |
|
category_id = 1 |
|
else: |
|
category_id = 1 |
|
ann = { |
|
"id": ann_cnt, |
|
"category_id": category_id, |
|
"image_id": image_cnt + frame_id, |
|
"track_id": track_id, |
|
"bbox": anns[i][2:6].tolist(), |
|
"conf": float(anns[i][6]), |
|
"iscrowd": 0, |
|
"area": float(anns[i][4] * anns[i][5]) |
|
} |
|
out["annotations"].append(ann) |
|
image_cnt += num_images |
|
print("loaded {} for {} images and {} samples".format( |
|
split, len(out["images"]), len(out["annotations"]))) |
|
with open(out_path, "w") as f: |
|
json.dump(out, f, indent=2) |