Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
English
Size:
1M - 10M
ArXiv:
License:
File size: 11,530 Bytes
8d2a1a7 19c3f36 8d2a1a7 19c3f36 fb2c7de c32bd2d ba21e14 5d10ca4 9c3fb2a 096d401 41d2b08 4db3a68 fb2c7de c32bd2d ba21e14 5d10ca4 9c3fb2a 096d401 41d2b08 4db3a68 8d2a1a7 d9077dc 5570707 d9077dc 8d2a1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
---
annotations_creators:
- crowdsourced
- machine-generated
language_creators:
- crowdsourced
- machine-generated
language:
- en
license:
- cc-by-2.0
- cc-by-2.5
- cc-by-3.0
- cc-by-4.0
- cc-by-sa-3.0
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 1T<n
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
pretty_name: People's Speech
tags:
- robust-speech-recognition
- noisy-speech-recognition
- speech-recognition
dataset_info:
- config_name: clean
features:
- name: id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: duration_ms
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 401733771186.124
num_examples: 1501271
- name: validation
num_bytes: 2459781412.24
num_examples: 18622
- name: test
num_bytes: 4324307722.96
num_examples: 34898
download_size: 398550700437
dataset_size: 408517860321.32404
- config_name: clean_sa
features:
- name: id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: duration_ms
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 75267509124.558
num_examples: 257093
- name: validation
num_bytes: 2075929254.254
num_examples: 18622
- name: test
num_bytes: 3894954757.41
num_examples: 34898
download_size: 72518549222
dataset_size: 81238393136.222
- config_name: dirty
features:
- name: id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: duration_ms
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 1569500875399.994
num_examples: 5476898
- name: validation
num_bytes: 2641406179.2539997
num_examples: 18622
- name: test
num_bytes: 5097236056.41
num_examples: 34898
download_size: 1496747948260
dataset_size: 1577239517635.6577
- config_name: dirty_sa
features:
- name: id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: duration_ms
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 163776914241.91
num_examples: 548014
- name: validation
num_bytes: 2075929254.254
num_examples: 18622
- name: test
num_bytes: 3894954757.41
num_examples: 34898
download_size: 149326092074
dataset_size: 169747798253.574
- config_name: microset
features:
- name: id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: duration_ms
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 92397066.0
num_examples: 336
download_size: 90204303
dataset_size: 92397066.0
- config_name: test
features:
- name: id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: duration_ms
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 3894954757.41
num_examples: 34898
download_size: 4087772459
dataset_size: 3894954757.41
- config_name: validation
features:
- name: id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: duration_ms
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 2075929254.254
num_examples: 18622
download_size: 2335244149
dataset_size: 2075929254.254
configs:
- config_name: clean
data_files:
- split: train
path: clean/train-*
- split: validation
path: clean/validation-*
- split: test
path: clean/test-*
- config_name: clean_sa
data_files:
- split: train
path: clean_sa/train-*
- split: validation
path: clean_sa/validation-*
- split: test
path: clean_sa/test-*
- config_name: dirty
data_files:
- split: train
path: dirty/train-*
- split: validation
path: dirty/validation-*
- split: test
path: dirty/test-*
- config_name: dirty_sa
data_files:
- split: train
path: dirty_sa/train-*
- split: validation
path: dirty_sa/validation-*
- split: test
path: dirty_sa/test-*
- config_name: microset
data_files:
- split: train
path: microset/train-*
- config_name: test
data_files:
- split: test
path: test/test-*
- config_name: validation
data_files:
- split: validation
path: validation/validation-*
---
# Dataset Card for People's Speech
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://mlcommons.org/en/peoples-speech/
- **Repository:** https://github.com/mlcommons/peoples-speech
- **Paper:** https://arxiv.org/abs/2111.09344
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [datasets@mlcommons.org](mailto:datasets@mlcommons.org)
### Dataset Summary
The People's Speech Dataset is among the world's largest English speech recognition corpus today that is licensed for academic and commercial usage under CC-BY-SA and CC-BY 4.0. It includes 30,000+ hours of transcribed speech in English languages with a diverse set of speakers. This open dataset is large enough to train speech-to-text systems and crucially is available with a permissive license.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
English
## Dataset Structure
### Data Instances
{
"id": "gov_DOT_uscourts_DOT_scotus_DOT_19-161/gov_DOT_uscourts_DOT_scotus_DOT_19-161_DOT_2020-03-02_DOT_mp3_00002.flac",
"audio": {
"path": "gov_DOT_uscourts_DOT_scotus_DOT_19-161/gov_DOT_uscourts_DOT_scotus_DOT_19-161_DOT_2020-03-02_DOT_mp3_00002.flac"
"array": array([-6.10351562e-05, ...]),
"sampling_rate": 16000
}
"duration_ms": 14490,
"text": "contends that the suspension clause requires a [...]"
}
### Data Fields
{
"id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"duration_ms": datasets.Value("int32"),
"text": datasets.Value("string"),
}
### Data Splits
We provide the following configurations for the dataset: `cc-by-clean` (`"clean"`), `cc-by-dirty` (`"dirty"`), `cc-by-sa-clean` (`"clean_sa"`), `cc-by-sa-dirty` (`"dirty_sa"`), and `microset` (`"microset"`).
We also provide validation and test configurations, which are not only available as standalone configurations but are also included as validation and test splits within each of the above configurations for ease of use.
Specifically:
- Setting `data_dir="validation"` and `split="validation"` corresponds to the validation split of any of the configurations: `"clean"`, `"clean_sa"`, `"dirty"`, or `"dirty_sa"`.
- Similarly, setting `data_dir="test"` and `split="test"` corresponds to the test split of these configurations.
```
βββ clean
β βββ train
β βββ validation
β βββ test
βββ clean_sa
β βββ train
β βββ validation
β βββ test
βββ dirty
β βββ train
β βββ validation
β βββ test
βββ dirty_sa
β βββ train
β βββ validation
β βββ test
βββ microset
β βββ train
βββ validation
β βββ validation
βββ test
βββ test
```
## Dataset Creation
### Curation Rationale
See our [paper](https://arxiv.org/abs/2111.09344).
### Source Data
#### Initial Data Collection and Normalization
Data was downloaded via the archive.org API. No data inference was done.
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
No manual annotation is done. We download only source audio with already existing transcripts.
#### Who are the annotators?
For the test and dev sets, we paid native American English speakers to do transcriptions. We do not know the identities of the transcriptionists for data in the training set. For the training set, we have noticed that some transcriptions are likely to be the output of automatic speech recognition systems.
### Personal and Sensitive Information
Several of our sources are legal and government proceedings, spoken histories, speeches, and so on. Given that these were intended as public documents and licensed as such, it is natural that the involved individuals are aware of this.
## Considerations for Using the Data
### Social Impact of Dataset
The dataset could be used for speech synthesis. However, this requires careful cleaning of the dataset, as background noise is not tolerable for speech synthesis.
The dataset could be used for keyword spotting tasks as well. In particular, this is good use case for the non-English audio in the dataset.
Our sincere hope is that the large breadth of sources our dataset incorporates reduces existing quality of service issues today, like speech recognition systemβs poor understanding of non-native English accents. We cannot think of any unfair treatment that come from using this dataset at this time.
### Discussion of Biases
Our data is downloaded from archive.org. As such, the data is biased towards whatever users decide to upload there.
Almost all of our data is American accented English.
### Other Known Limitations
As of version 1.0, a portion of data in the training, test, and dev sets is poorly aligned. Specifically, some words appear in the transcript, but not the audio, or some words appear in the audio, but not the transcript. We are working on it.
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
We provide CC-BY and CC-BY-SA subsets of the dataset.
### Citation Information
Please cite:
```
@article{DBLP:journals/corr/abs-2111-09344,
author = {Daniel Galvez and
Greg Diamos and
Juan Ciro and
Juan Felipe Cer{\'{o}}n and
Keith Achorn and
Anjali Gopi and
David Kanter and
Maximilian Lam and
Mark Mazumder and
Vijay Janapa Reddi},
title = {The People's Speech: {A} Large-Scale Diverse English Speech Recognition
Dataset for Commercial Usage},
journal = {CoRR},
volume = {abs/2111.09344},
year = {2021},
url = {https://arxiv.org/abs/2111.09344},
eprinttype = {arXiv},
eprint = {2111.09344},
timestamp = {Mon, 22 Nov 2021 16:44:07 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09344.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |