Commit
·
2ce90a9
1
Parent(s):
9d86664
add loading script
Browse files- peoples_speech.py +174 -0
peoples_speech.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
|
17 |
+
import datasets
|
18 |
+
from datasets.tasks import AutomaticSpeechRecognition
|
19 |
+
from tqdm.auto import tqdm
|
20 |
+
|
21 |
+
|
22 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
23 |
+
_CITATION = """\
|
24 |
+
@article{DBLP:journals/corr/abs-2111-09344,
|
25 |
+
author = {Daniel Galvez and
|
26 |
+
Greg Diamos and
|
27 |
+
Juan Ciro and
|
28 |
+
Juan Felipe Ceron and
|
29 |
+
Keith Achorn and
|
30 |
+
Anjali Gopi and
|
31 |
+
David Kanter and
|
32 |
+
Maximilian Lam and
|
33 |
+
Mark Mazumder and
|
34 |
+
Vijay Janapa Reddi},
|
35 |
+
title = {The People's Speech: A Large-Scale Diverse English Speech Recognition
|
36 |
+
Dataset for Commercial Usage},
|
37 |
+
journal = {CoRR},
|
38 |
+
volume = {abs/2111.09344},
|
39 |
+
year = {2021},
|
40 |
+
url = {https://arxiv.org/abs/2111.09344},
|
41 |
+
eprinttype = {arXiv},
|
42 |
+
eprint = {2111.09344},
|
43 |
+
timestamp = {Mon, 22 Nov 2021 16:44:07 +0100},
|
44 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09344.bib},
|
45 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
# You can copy an official description
|
50 |
+
_DESCRIPTION = """\
|
51 |
+
The People's Speech is a free-to-download 30,000-hour and growing supervised
|
52 |
+
conversational English speech recognition dataset licensed for academic and
|
53 |
+
commercial usage under CC-BY-SA (with a CC-BY subset).
|
54 |
+
"""
|
55 |
+
|
56 |
+
_HOMEPAGE = "https://mlcommons.org/en/peoples-speech/"
|
57 |
+
|
58 |
+
_LICENSE = [
|
59 |
+
"cc-by-2.0", "cc-by-2.5", "cc-by-3.0", "cc-by-4.0", "cc-by-sa-2.5",
|
60 |
+
"cc-by-sa-3.0", "cc-by-sa-4.0"
|
61 |
+
]
|
62 |
+
|
63 |
+
# TODO: Add link to the official dataset URLs here
|
64 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
65 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
66 |
+
_URLS = {
|
67 |
+
"clean-cc-by": {
|
68 |
+
"audio_tar": "",
|
69 |
+
"manifest": "",
|
70 |
+
},
|
71 |
+
"dirty-cc-by": {
|
72 |
+
"audio_tar": "",
|
73 |
+
"manifest": "",
|
74 |
+
},
|
75 |
+
"clean-cc-by-sa": {
|
76 |
+
"audio_tar": "",
|
77 |
+
"manifest": "",
|
78 |
+
},
|
79 |
+
"dirty-cc-by-sa": {
|
80 |
+
"audio_tar": "",
|
81 |
+
"manifest": "",
|
82 |
+
},
|
83 |
+
"microset": {
|
84 |
+
"audio_tar": "",
|
85 |
+
"manifest": "",
|
86 |
+
},
|
87 |
+
}
|
88 |
+
|
89 |
+
# _BASE_URL = "https://huggingface.co/datasets/MLCommons/peoples_speech/resolve/main/"
|
90 |
+
|
91 |
+
# relative path to data inside dataset's repo
|
92 |
+
_DATA_URL = "{config}/{config}_00000{archive_id}.tar"
|
93 |
+
|
94 |
+
# relative path to metadata inside dataset's repo
|
95 |
+
_MANIFEST_URL = "{config}.json"
|
96 |
+
|
97 |
+
|
98 |
+
class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
99 |
+
"""The People's Speech dataset."""
|
100 |
+
|
101 |
+
VERSION = datasets.Version("1.1.0")
|
102 |
+
BUILDER_CONFIGS = [
|
103 |
+
datasets.BuilderConfig(name="clean", version=VERSION, description="Clean, CC-BY licensed subset."),
|
104 |
+
datasets.BuilderConfig(name="dirty", version=VERSION, description="Dirty, CC-BY licensed subset."),
|
105 |
+
datasets.BuilderConfig(name="clean_sa", version=VERSION, description="Clean, CC-BY-SA licensed subset."),
|
106 |
+
datasets.BuilderConfig(name="dirty_sa", version=VERSION, description="Dirty, CC-BY-SA licensed subset."),
|
107 |
+
]
|
108 |
+
DEFAULT_CONFIG_NAME = "clean"
|
109 |
+
DEFAULT_WRITER_BATCH_SIZE = 1
|
110 |
+
|
111 |
+
def _info(self):
|
112 |
+
return datasets.DatasetInfo(
|
113 |
+
description=_DESCRIPTION,
|
114 |
+
features=datasets.Features(
|
115 |
+
{
|
116 |
+
"id": datasets.Value("string"),
|
117 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
118 |
+
"duration_ms": datasets.Value("int32"),
|
119 |
+
"text": datasets.Value("string"),
|
120 |
+
}
|
121 |
+
),
|
122 |
+
task_templates=[AutomaticSpeechRecognition()],
|
123 |
+
supervised_keys=("file", "text"),
|
124 |
+
homepage=_HOMEPAGE,
|
125 |
+
license="/".join(_LICENSE), # license must be a string
|
126 |
+
citation=_CITATION,
|
127 |
+
)
|
128 |
+
|
129 |
+
def _split_generators(self, dl_manager):
|
130 |
+
# TODO: for demo purposes I use just first 5 archives
|
131 |
+
# TODO: this should be changed to the actual number of archives further
|
132 |
+
urls = [_DATA_URL.format(config=self.config.name, archive_id=i) for i in range(5)]
|
133 |
+
archives = [dl_manager.iter_archive(dl_manager.download(url)) for url in urls]
|
134 |
+
|
135 |
+
manifest_url = _MANIFEST_URL.format(config=self.config.name)
|
136 |
+
manifest_path = dl_manager.download_and_extract(manifest_url) # maybe just download?
|
137 |
+
|
138 |
+
return [
|
139 |
+
datasets.SplitGenerator(
|
140 |
+
name=datasets.Split.TRAIN,
|
141 |
+
gen_kwargs={
|
142 |
+
"archives": archives,
|
143 |
+
"manifest_path": manifest_path
|
144 |
+
},
|
145 |
+
),
|
146 |
+
]
|
147 |
+
|
148 |
+
def _generate_examples(self, archives, manifest_path):
|
149 |
+
meta = dict()
|
150 |
+
with open(manifest_path, "r", encoding="utf-8") as f:
|
151 |
+
for line in tqdm(f, desc="reading metadata file"):
|
152 |
+
sample_meta = json.loads(line)
|
153 |
+
_id = sample_meta["audio_document_id"]
|
154 |
+
texts = sample_meta["training_data"]["label"]
|
155 |
+
audio_filenames = sample_meta["training_data"]["name"]
|
156 |
+
durations = sample_meta["training_data"]["duration_ms"]
|
157 |
+
for audio_filename, text, duration in zip(audio_filenames, texts, durations):
|
158 |
+
meta[audio_filename] = {
|
159 |
+
"audio_document_id": _id,
|
160 |
+
"text": text,
|
161 |
+
"duration_ms": duration
|
162 |
+
}
|
163 |
+
|
164 |
+
print("generating examples")
|
165 |
+
for archive in archives:
|
166 |
+
# note that you don't need to use `tarfile` library and open tar archives manually
|
167 |
+
# dl_manager.iter_archive() does it for you :)
|
168 |
+
for audio_filename, audio_file in archive:
|
169 |
+
yield audio_filename, {
|
170 |
+
"id": audio_filename,
|
171 |
+
"audio": {"path": audio_filename, "bytes": audio_file.read()},
|
172 |
+
"text": meta[audio_filename]["text"],
|
173 |
+
"duration_ms": meta[audio_filename]["duration_ms"]
|
174 |
+
}
|