Datasets:

Languages:
English
ArXiv:
License:
polinaeterna HF staff commited on
Commit
720b05b
·
1 Parent(s): 7ea2120

store local paths in non-streaming mode

Browse files
Files changed (1) hide show
  1. peoples_speech.py +14 -10
peoples_speech.py CHANGED
@@ -13,6 +13,7 @@
13
  # limitations under the License.
14
 
15
  import json
 
16
 
17
  import datasets
18
  from datasets.tasks import AutomaticSpeechRecognition
@@ -86,13 +87,13 @@ _URLS = {
86
  },
87
  }
88
 
89
- # _BASE_URL = "https://huggingface.co/datasets/MLCommons/peoples_speech/resolve/main/"
90
 
91
  # relative path to data inside dataset's repo
92
- _DATA_URL = "{config}/{config}_00000{archive_id}.tar"
93
 
94
  # relative path to metadata inside dataset's repo
95
- _MANIFEST_URL = "{config}.json"
96
 
97
 
98
  class PeoplesSpeech(datasets.GeneratorBasedBuilder):
@@ -130,7 +131,9 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
130
  # TODO: for demo purposes I use just first 5 archives
131
  # TODO: this should be changed to the actual number of archives further
132
  urls = [_DATA_URL.format(config=self.config.name, archive_id=i) for i in range(5)]
133
- archives = [dl_manager.iter_archive(dl_manager.download(url)) for url in urls]
 
 
134
 
135
  manifest_url = _MANIFEST_URL.format(config=self.config.name)
136
  manifest_path = dl_manager.download_and_extract(manifest_url)
@@ -139,13 +142,14 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
139
  datasets.SplitGenerator(
140
  name=datasets.Split.TRAIN,
141
  gen_kwargs={
142
- "archives": archives,
 
143
  "manifest_path": manifest_path
144
  },
145
  ),
146
  ]
147
 
148
- def _generate_examples(self, archives, manifest_path):
149
  meta = dict()
150
  with open(manifest_path, "r", encoding="utf-8") as f:
151
  for line in tqdm(f, desc="reading metadata file"):
@@ -162,13 +166,13 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
162
  }
163
 
164
  print("generating examples")
165
- for archive in archives:
166
- # note that you don't need to use `tarfile` library and open tar archives manually
167
- # dl_manager.iter_archive() does it for you :)
168
  for audio_filename, audio_file in archive:
 
 
169
  yield audio_filename, {
170
  "id": audio_filename,
171
- "audio": {"path": audio_filename, "bytes": audio_file.read()},
172
  "text": meta[audio_filename]["text"],
173
  "duration_ms": meta[audio_filename]["duration_ms"]
174
  }
 
13
  # limitations under the License.
14
 
15
  import json
16
+ import os
17
 
18
  import datasets
19
  from datasets.tasks import AutomaticSpeechRecognition
 
87
  },
88
  }
89
 
90
+ _BASE_URL = "https://huggingface.co/datasets/MLCommons/peoples_speech/resolve/main/"
91
 
92
  # relative path to data inside dataset's repo
93
+ _DATA_URL = _BASE_URL + "{config}/{config}_00000{archive_id}.tar"
94
 
95
  # relative path to metadata inside dataset's repo
96
+ _MANIFEST_URL = _BASE_URL + "{config}.json"
97
 
98
 
99
  class PeoplesSpeech(datasets.GeneratorBasedBuilder):
 
131
  # TODO: for demo purposes I use just first 5 archives
132
  # TODO: this should be changed to the actual number of archives further
133
  urls = [_DATA_URL.format(config=self.config.name, archive_id=i) for i in range(5)]
134
+ archive_paths = [dl_manager.download(url) for url in urls]
135
+ local_extracted_archive_paths = [dl_manager.extract(path) for path in archive_paths] \
136
+ if not dl_manager.is_streaming else [None] * len(archive_paths)
137
 
138
  manifest_url = _MANIFEST_URL.format(config=self.config.name)
139
  manifest_path = dl_manager.download_and_extract(manifest_url)
 
142
  datasets.SplitGenerator(
143
  name=datasets.Split.TRAIN,
144
  gen_kwargs={
145
+ "local_extracted_archive_paths": local_extracted_archive_paths,
146
+ "archives": [dl_manager.iter_archive(path) for path in archive_paths],
147
  "manifest_path": manifest_path
148
  },
149
  ),
150
  ]
151
 
152
+ def _generate_examples(self, local_extracted_archive_paths, archives, manifest_path):
153
  meta = dict()
154
  with open(manifest_path, "r", encoding="utf-8") as f:
155
  for line in tqdm(f, desc="reading metadata file"):
 
166
  }
167
 
168
  print("generating examples")
169
+ for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives):
 
 
170
  for audio_filename, audio_file in archive:
171
+ path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path \
172
+ else audio_filename
173
  yield audio_filename, {
174
  "id": audio_filename,
175
+ "audio": {"path": path, "bytes": audio_file.read()},
176
  "text": meta[audio_filename]["text"],
177
  "duration_ms": meta[audio_filename]["duration_ms"]
178
  }