Commit
·
949d4d7
1
Parent(s):
f9dc33b
add splits support
Browse files- peoples_speech.py +57 -17
peoples_speech.py
CHANGED
@@ -61,14 +61,16 @@ _LICENSE = [
|
|
61 |
"cc-by-sa-3.0", "cc-by-sa-4.0"
|
62 |
]
|
63 |
|
|
|
|
|
64 |
# relative path to data inside dataset's repo
|
65 |
-
_DATA_URL = "
|
66 |
|
67 |
# relative path to file containing number of audio archives inside dataset's repo
|
68 |
-
_N_FILES_URL = "
|
69 |
|
70 |
# relative path to metadata inside dataset's repo
|
71 |
-
_MANIFEST_URL = "
|
72 |
|
73 |
|
74 |
class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
@@ -103,21 +105,39 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
103 |
citation=_CITATION,
|
104 |
)
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def _split_generators(self, dl_manager):
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
n_files = int(f.read().strip())
|
111 |
|
112 |
-
urls =
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# In non-streaming mode, we extract the archives to have the data locally:
|
116 |
-
local_extracted_archive_paths =
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
# To access the audio data from the TAR archives using the download manager,
|
123 |
# we have to use the dl_manager.iter_archive method
|
@@ -133,10 +153,28 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
133 |
datasets.SplitGenerator(
|
134 |
name=datasets.Split.TRAIN,
|
135 |
gen_kwargs={
|
136 |
-
"local_extracted_archive_paths": local_extracted_archive_paths,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
# use iter_archive here to access the files in the TAR archives:
|
138 |
-
"archives": [dl_manager.iter_archive(path) for path in archive_paths],
|
139 |
-
"manifest_path":
|
140 |
},
|
141 |
),
|
142 |
]
|
@@ -151,6 +189,7 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
151 |
audio_filenames = sample_meta["training_data"]["name"]
|
152 |
durations = sample_meta["training_data"]["duration_ms"]
|
153 |
for audio_filename, text, duration in zip(audio_filenames, texts, durations):
|
|
|
154 |
meta[audio_filename] = {
|
155 |
"audio_document_id": _id,
|
156 |
"text": text,
|
@@ -160,6 +199,7 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
160 |
for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives):
|
161 |
# Here we iterate over all the files within the TAR archive:
|
162 |
for audio_filename, audio_file in archive:
|
|
|
163 |
# if an audio file exists locally (i.e. in default, non-streaming mode) set the full path to it
|
164 |
# joining path to directory that the archive was extracted to and audio filename.
|
165 |
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path \
|
|
|
61 |
"cc-by-sa-3.0", "cc-by-sa-4.0"
|
62 |
]
|
63 |
|
64 |
+
# _BASE_URL = "https://huggingface.co/datasets/MLCommons/peoples_speech/resolve/main/"
|
65 |
+
|
66 |
# relative path to data inside dataset's repo
|
67 |
+
_DATA_URL = "{split}/{config}/{config}_{archive_id:06d}.tar"
|
68 |
|
69 |
# relative path to file containing number of audio archives inside dataset's repo
|
70 |
+
_N_FILES_URL = "{split}/{config}/n_files.txt"
|
71 |
|
72 |
# relative path to metadata inside dataset's repo
|
73 |
+
_MANIFEST_URL = "{split}/{config}.json"
|
74 |
|
75 |
|
76 |
class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
|
105 |
citation=_CITATION,
|
106 |
)
|
107 |
|
108 |
+
def _get_n_files(self, dl_manager, split, config):
|
109 |
+
n_files_url = _N_FILES_URL.format(split=split, config=config)
|
110 |
+
n_files_paths = dl_manager.download_and_extract(n_files_url)
|
111 |
+
|
112 |
+
with open(n_files_paths, encoding="utf-8") as f:
|
113 |
+
return int(f.read().strip())
|
114 |
+
|
115 |
def _split_generators(self, dl_manager):
|
116 |
+
n_files_train = self._get_n_files(dl_manager, split="train", config=self.config.name)
|
117 |
+
n_files_dev = self._get_n_files(dl_manager, split="dev", config="dev")
|
118 |
+
n_files_test = self._get_n_files(dl_manager, split="test", config="test")
|
|
|
119 |
|
120 |
+
urls = {
|
121 |
+
"train": [_DATA_URL.format(split="train", config=self.config.name, archive_id=i) for i in range(n_files_train)],
|
122 |
+
"dev": [_DATA_URL.format(split="dev", config="dev", archive_id=i) for i in range(n_files_dev)],
|
123 |
+
"test": [_DATA_URL.format(split="test", config="test", archive_id=i) for i in range(n_files_test)],
|
124 |
+
}
|
125 |
+
archive_paths = dl_manager.download(urls)
|
126 |
|
127 |
# In non-streaming mode, we extract the archives to have the data locally:
|
128 |
+
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else \
|
129 |
+
{
|
130 |
+
"train": [None] * len(archive_paths),
|
131 |
+
"dev": [None] * len(archive_paths),
|
132 |
+
"test": [None] * len(archive_paths),
|
133 |
+
}
|
134 |
+
|
135 |
+
manifest_urls = {
|
136 |
+
"train": _MANIFEST_URL.format(split="train", config=self.config.name),
|
137 |
+
"dev": _MANIFEST_URL.format(split="dev", config="dev"),
|
138 |
+
"test": _MANIFEST_URL.format(split="test", config="test"),
|
139 |
+
}
|
140 |
+
manifest_paths = dl_manager.download_and_extract(manifest_urls)
|
141 |
|
142 |
# To access the audio data from the TAR archives using the download manager,
|
143 |
# we have to use the dl_manager.iter_archive method
|
|
|
153 |
datasets.SplitGenerator(
|
154 |
name=datasets.Split.TRAIN,
|
155 |
gen_kwargs={
|
156 |
+
"local_extracted_archive_paths": local_extracted_archive_paths["train"],
|
157 |
+
# use iter_archive here to access the files in the TAR archives:
|
158 |
+
"archives": [dl_manager.iter_archive(path) for path in archive_paths["train"]],
|
159 |
+
"manifest_path": manifest_paths["train"],
|
160 |
+
},
|
161 |
+
),
|
162 |
+
datasets.SplitGenerator(
|
163 |
+
name=datasets.Split.VALIDATION,
|
164 |
+
gen_kwargs={
|
165 |
+
"local_extracted_archive_paths": local_extracted_archive_paths["dev"],
|
166 |
+
# use iter_archive here to access the files in the TAR archives:
|
167 |
+
"archives": [dl_manager.iter_archive(path) for path in archive_paths["dev"]],
|
168 |
+
"manifest_path": manifest_paths["dev"],
|
169 |
+
},
|
170 |
+
),
|
171 |
+
datasets.SplitGenerator(
|
172 |
+
name=datasets.Split.TEST,
|
173 |
+
gen_kwargs={
|
174 |
+
"local_extracted_archive_paths": local_extracted_archive_paths["dev"],
|
175 |
# use iter_archive here to access the files in the TAR archives:
|
176 |
+
"archives": [dl_manager.iter_archive(path) for path in archive_paths["test"]],
|
177 |
+
"manifest_path": manifest_paths["test"],
|
178 |
},
|
179 |
),
|
180 |
]
|
|
|
189 |
audio_filenames = sample_meta["training_data"]["name"]
|
190 |
durations = sample_meta["training_data"]["duration_ms"]
|
191 |
for audio_filename, text, duration in zip(audio_filenames, texts, durations):
|
192 |
+
audio_filename = audio_filename.lstrip("./")
|
193 |
meta[audio_filename] = {
|
194 |
"audio_document_id": _id,
|
195 |
"text": text,
|
|
|
199 |
for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives):
|
200 |
# Here we iterate over all the files within the TAR archive:
|
201 |
for audio_filename, audio_file in archive:
|
202 |
+
audio_filename = audio_filename.lstrip("./")
|
203 |
# if an audio file exists locally (i.e. in default, non-streaming mode) set the full path to it
|
204 |
# joining path to directory that the archive was extracted to and audio filename.
|
205 |
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path \
|