--- language: - en license: mit task_categories: - time-series-forecasting dataset_info: features: - name: t dtype: array2_d: shape: - 1001 - 1 dtype: float64 - name: x dtype: array2_d: shape: - 1001 - 900 dtype: float64 - name: args dtype: array2_d: shape: - 1001 - 1 dtype: float64 splits: - name: train num_bytes: 4413496400 num_examples: 610 - name: valid num_bytes: 795876400 num_examples: 110 - name: test_fast num_bytes: 3617620000 num_examples: 500 - name: test_medium num_bytes: 3617620000 num_examples: 500 - name: test_slow num_bytes: 3617620000 num_examples: 500 download_size: 14279999184 dataset_size: 16062232800 configs: - config_name: default data_files: - split: train path: data/train-* - split: valid path: data/valid-* - split: test_fast path: data/test_fast-* - split: test_medium path: data/test_medium-* - split: test_slow path: data/test_slow-* --- # Dataset for polymer dynamics References - Chen, X. et al. Constructing custom thermodynamics using deep learning. Nature Computational Science 4, 66–85 (2024).