|
import os |
|
import re |
|
import subprocess |
|
from typing import Set, Tuple |
|
|
|
|
|
import spacy |
|
import jieba |
|
|
|
import gzip |
|
import json |
|
from pathlib import Path |
|
import logging |
|
from datatrove.executor.local import LocalPipelineExecutor |
|
from datatrove.pipeline.filters import ( |
|
RegexFilter, |
|
LanguageFilter, |
|
GopherQualityFilter, |
|
C4QualityFilter, |
|
) |
|
from datatrove.pipeline.dedup import ( |
|
MinhashDedupCluster, |
|
MinhashDedupFilter, |
|
MinhashDedupSignature, |
|
MinhashConfig, |
|
MinhashDedupBuckets, |
|
) |
|
from datatrove.pipeline.writers.jsonl import JsonlWriter |
|
from datatrove.pipeline.writers.parquet import ParquetWriter |
|
from datatrove.pipeline.readers import ParquetReader |
|
from datatrove.pipeline.tokens import TokensCounter |
|
from datatrove.pipeline.formatters import PIIFormatter |
|
|
|
|
|
MAIN_OUTPUT_PATH = "./output" |
|
FILTERING_OUTPUT_PATH = f"{MAIN_OUTPUT_PATH}/base_processing" |
|
DUMP = "CC-MAIN-2024-26" |
|
S3_MINHASH_BASE_PATH = f"{MAIN_OUTPUT_PATH}/minhash" |
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
minhash_config = MinhashConfig( |
|
num_buckets=14, |
|
hashes_per_bucket=8, |
|
n_grams=2, |
|
) |
|
|
|
|
|
chinese_stop_words = [ |
|
"的", "了", "和", "是", "就", "都", "而", "及", "與", "這", "其", "但", "並", "個", "我", |
|
"你", "他", "她", "它", "們", "我們", "你們", "他們", "她們", "它們", "在", "有", "人", |
|
"這個", "那個", "如果", "因為", "所以", "可以", "沒有", "很", "非常", "得", "著", "過", "為", "再", |
|
"吧", "呢", "啊", "哪", "那", "麼", "什麼", "誰", "哪裡", "哪裡", "怎麼", "怎麼樣", "為什麼", "將" |
|
] |
|
import shutil |
|
|
|
def clear_previous_outputs(): |
|
directories_to_clear = [ |
|
f"{MAIN_OUTPUT_PATH}/base_processing", |
|
f"{MAIN_OUTPUT_PATH}/filtered_output", |
|
f"{S3_MINHASH_BASE_PATH}/{DUMP}/signatures", |
|
f"{S3_MINHASH_BASE_PATH}/{DUMP}/buckets", |
|
f"{S3_MINHASH_BASE_PATH}/{DUMP}/remove_ids", |
|
f"{S3_MINHASH_BASE_PATH}/{DUMP}/deduped_output", |
|
f"{MAIN_OUTPUT_PATH}/logs", |
|
] |
|
|
|
for directory in directories_to_clear: |
|
if os.path.exists(directory): |
|
print(f"Removing: {directory}") |
|
shutil.rmtree(directory) |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
def read_character_mappings(file_path: str) -> Tuple[Set[str], Set[str]]: |
|
traditional = set() |
|
simplified = set() |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
for line in f: |
|
chars = line.strip().split('\t') |
|
if len(chars) >= 2: |
|
trad, simps = chars[0], chars[1].split() |
|
traditional.add(trad) |
|
simplified.update(simps) |
|
return traditional, simplified |
|
|
|
def read_traditional_characters(file_path: str) -> Set[str]: |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
return set(f.read().strip()) |
|
|
|
def create_simplified_filter(simplified_only: Set[str]) -> RegexFilter: |
|
simplified_pattern = '|'.join(re.escape(char) for char in simplified_only) |
|
return RegexFilter( |
|
regex_exp=simplified_pattern, |
|
exclusion_writer=JsonlWriter( |
|
f"{FILTERING_OUTPUT_PATH}/removed/simplified/{DUMP}", |
|
output_filename="${rank}.jsonl.gz" |
|
) |
|
) |
|
|
|
def initial_filtering_pipeline(simplified_filter: RegexFilter) -> Tuple[LocalPipelineExecutor, LocalPipelineExecutor, LocalPipelineExecutor]: |
|
|
|
initial_executor_part1 = LocalPipelineExecutor( |
|
pipeline=[ |
|
ParquetReader("./input/hugg-init/out-1720278098.parquet"), |
|
LanguageFilter(languages=["zh"], language_threshold=0.65), |
|
simplified_filter, |
|
ParquetWriter(f"{MAIN_OUTPUT_PATH}/temp_output_part1") |
|
], |
|
tasks=8, |
|
workers=8, |
|
logging_dir=f"{MAIN_OUTPUT_PATH}/logs/base_processing/{DUMP}/part1", |
|
) |
|
|
|
|
|
initial_executor_part2 = LocalPipelineExecutor( |
|
pipeline=[ |
|
ParquetReader(f"{MAIN_OUTPUT_PATH}/temp_output_part1"), |
|
GopherQualityFilter( |
|
min_doc_words=15, |
|
max_doc_words=10000, |
|
min_avg_word_length=1, |
|
max_avg_word_length=4, |
|
max_symbol_word_ratio=0.1, |
|
max_bullet_lines_ratio=0.9, |
|
max_ellipsis_lines_ratio=0.3, |
|
min_stop_words=1, |
|
stop_words=chinese_stop_words, |
|
exclusion_writer=JsonlWriter(f"{FILTERING_OUTPUT_PATH}/removed/4_gopher_qual/{DUMP}"), |
|
language="zh", |
|
), |
|
ParquetWriter(f"{MAIN_OUTPUT_PATH}/temp_output_part2") |
|
], |
|
tasks=8, |
|
workers=8, |
|
logging_dir=f"{MAIN_OUTPUT_PATH}/logs/base_processing/{DUMP}/part2", |
|
) |
|
|
|
|
|
initial_executor_part3 = LocalPipelineExecutor( |
|
pipeline=[ |
|
ParquetReader(f"{MAIN_OUTPUT_PATH}/temp_output_part2"), |
|
C4QualityFilter( |
|
split_paragraph=False, |
|
remove_citations=False, |
|
filter_no_terminal_punct=False, |
|
min_num_sentences=-1, |
|
min_words_per_line=-1, |
|
max_word_length=-1, |
|
filter_lorem_ipsum=False, |
|
filter_javascript=True, |
|
filter_curly_bracket=True, |
|
filter_policy=True, |
|
language="zh", |
|
exclusion_writer=JsonlWriter(f"{FILTERING_OUTPUT_PATH}/removed/5_c4/{DUMP}"), |
|
), |
|
ParquetWriter(f"{MAIN_OUTPUT_PATH}/filtered_output") |
|
], |
|
tasks=8, |
|
workers=8, |
|
logging_dir=f"{MAIN_OUTPUT_PATH}/logs/base_processing/{DUMP}/part3", |
|
) |
|
return initial_executor_part1, initial_executor_part2, initial_executor_part3 |
|
|
|
def deduplication_pipeline() -> Tuple[LocalPipelineExecutor, LocalPipelineExecutor, LocalPipelineExecutor, LocalPipelineExecutor]: |
|
stage1 = LocalPipelineExecutor( |
|
pipeline=[ |
|
ParquetReader(f"{MAIN_OUTPUT_PATH}/filtered_output"), |
|
MinhashDedupSignature( |
|
output_folder=f"{S3_MINHASH_BASE_PATH}/{DUMP}/signatures", |
|
config=minhash_config, |
|
language="zh", |
|
), |
|
], |
|
tasks=8, |
|
workers=8, |
|
logging_dir=f"{MAIN_OUTPUT_PATH}/logs/minhash/signatures", |
|
) |
|
|
|
stage2 = LocalPipelineExecutor( |
|
pipeline=[ |
|
MinhashDedupBuckets( |
|
input_folder=f"{S3_MINHASH_BASE_PATH}/{DUMP}/signatures", |
|
output_folder=f"{S3_MINHASH_BASE_PATH}/{DUMP}/buckets", |
|
config=minhash_config, |
|
), |
|
], |
|
tasks=minhash_config.num_buckets, |
|
workers=8, |
|
logging_dir=f"{MAIN_OUTPUT_PATH}/logs/minhash/buckets", |
|
) |
|
|
|
stage3 = LocalPipelineExecutor( |
|
pipeline=[ |
|
MinhashDedupCluster( |
|
input_folder=f"{S3_MINHASH_BASE_PATH}/{DUMP}/buckets", |
|
output_folder=f"{S3_MINHASH_BASE_PATH}/{DUMP}/remove_ids", |
|
config=minhash_config, |
|
), |
|
], |
|
tasks=1, |
|
workers=1, |
|
logging_dir=f"{MAIN_OUTPUT_PATH}/logs/minhash/clustering", |
|
) |
|
|
|
stage4 = LocalPipelineExecutor( |
|
pipeline=[ |
|
ParquetReader(f"{MAIN_OUTPUT_PATH}/filtered_output"), |
|
TokensCounter(), |
|
MinhashDedupFilter(input_folder=f"{S3_MINHASH_BASE_PATH}/{DUMP}/remove_ids"), |
|
PIIFormatter(), |
|
ParquetWriter(f"{S3_MINHASH_BASE_PATH}/{DUMP}/deduped_output"), |
|
], |
|
tasks=8, |
|
workers=8, |
|
logging_dir=f"{MAIN_OUTPUT_PATH}/logs/minhash/filtering", |
|
) |
|
|
|
return stage1, stage2, stage3, stage4 |
|
|
|
def analyze_removed_documents(removed_dir: str, simplified_pattern: str, output_file: str): |
|
removed_files = Path(removed_dir).glob('*.jsonl.gz') |
|
simplified_regex = re.compile(f'[{simplified_pattern}]') |
|
|
|
total_documents = 0 |
|
documents_with_simplified = 0 |
|
|
|
with gzip.open(output_file, 'wt', encoding='utf-8') as out_f: |
|
for file in removed_files: |
|
logger.info(f"Analyzing file: {file.name}") |
|
with gzip.open(file, 'rt', encoding='utf-8') as in_f: |
|
for line in in_f: |
|
total_documents += 1 |
|
document = json.loads(line) |
|
text = document.get('text', '') |
|
|
|
matches = list(set(simplified_regex.findall(text))) |
|
if matches: |
|
documents_with_simplified += 1 |
|
result = { |
|
"document_number": total_documents, |
|
"simplified_characters": matches, |
|
"text_snippet": text |
|
} |
|
out_f.write(json.dumps(result, ensure_ascii=False) + '\n') |
|
|
|
logger.info(f"Analysis complete. Results written to {output_file}") |
|
logger.info(f"Total documents analyzed: {total_documents}") |
|
logger.info(f"Documents with simplified characters: {documents_with_simplified}") |
|
|
|
def main(restart=False): |
|
if restart: |
|
clear_previous_outputs() |
|
|
|
|
|
ts_traditional, ts_simplified = read_character_mappings("./input/ts-map/TSCharacters.txt") |
|
st_traditional, st_simplified = read_character_mappings("./input/ts-map/STCharacters.txt") |
|
|
|
|
|
traditional = ts_traditional.union(st_traditional) |
|
simplified = ts_simplified.union(st_simplified) |
|
|
|
|
|
white_list = set("床峰群秘霉庄痴雇简体踪") |
|
additional_set = read_traditional_characters("./input/dict-tradi2/trad.txt") |
|
print(f"Number of additional traditional characters: {len(additional_set)}") |
|
|
|
simplified_only = simplified - traditional - white_list |
|
|
|
|
|
simplified_filter = create_simplified_filter(simplified_only) |
|
|
|
|
|
|
|
initial_executor_part1, initial_executor_part2, initial_executor_part3 = initial_filtering_pipeline(simplified_filter) |
|
initial_executor_part1.run() |
|
initial_executor_part2.run() |
|
initial_executor_part3.run() |
|
|
|
logger.info("Initial filtering complete. Starting analysis of removed documents.") |
|
removed_dir = f"{FILTERING_OUTPUT_PATH}/removed/simplified/{DUMP}" |
|
output_file = f"{MAIN_OUTPUT_PATH}/simplified_analysis_results.jsonl.gz" |
|
|
|
|
|
simplified_pattern = ''.join(simplified_only) |
|
|
|
analyze_removed_documents(removed_dir, simplified_pattern, output_file) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser(description="Run Chinese text processing pipeline") |
|
parser.add_argument("--restart", action="store_true", help="Clear previous outputs and restart processing") |
|
args = parser.parse_args() |
|
|
|
main(restart=args.restart) |