# coding=utf-8 import os from dataclasses import dataclass import datasets from datasets.tasks import ImageClassification _HOMEPAGE = "TODO" _CITATION = """\ TODO """ _DESCRIPTION = """\ TODO """ _URL = "https://huggingface.co/datasets/HugsVision/STANFORD-CARS-TYPES/resolve/main/car_data.zip" @dataclass class CustomConfig(datasets.BuilderConfig): name: str = None version: datasets.Version = None description: str = None schema: str = None subset_id: str = None class STANFORDCARSTYPES(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.2") BUILDER_CONFIGS = [ CustomConfig( name="default", version=VERSION, description="Stanford cars datasets.", schema="default", subset_id="default", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image_file_path": datasets.Value("string"), "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=['convertible', 'coupe', 'hatchback', 'sedan', 'suv', 'truck', 'van', 'wagon']), } ), supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="labels")], ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_dir": os.path.join(data_dir, "train"), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_dir": os.path.join(data_dir, "test"), }, ), ] def _generate_examples(self, data_dir): idx = 0 for class_name in os.listdir(data_dir): class_name_path = os.path.join(data_dir, class_name) for file_name in os.listdir(class_name_path): file_path = os.path.join(class_name_path, file_name) idx += 1 yield idx, { "image_file_path": file_path, "image": file_path, "labels": class_name, }