--- license: mit configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - config_name: finetune data_files: - split: train path: finetune/train-* - split: validation path: finetune/validation-* - split: test path: finetune/test-* dataset_info: - config_name: default features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: duration dtype: float32 - name: student_id dtype: string - name: date dtype: string - name: time dtype: string - name: module dtype: string - name: investigation dtype: string - name: part dtype: string splits: - name: train num_bytes: 43732745924.625 num_examples: 181323 - name: validation num_bytes: 5529107838.5 num_examples: 23652 - name: test num_bytes: 5385316354.0 num_examples: 22592 download_size: 50216196525 dataset_size: 54647170117.125 - config_name: finetune features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: duration dtype: float32 splits: - name: train num_bytes: 12603945060.375 num_examples: 51029 - name: validation num_bytes: 2082115799.625 num_examples: 8459 - name: test num_bytes: 2224927204.0 num_examples: 9200 download_size: 16055315812 dataset_size: 16910988064.0 --- NOTE: This is not a public dataset, I couldn't share access. There are two config for this dataset: 1. By default, is loading the raw dataset with basically everything of the dataset 2. There is another configuration is for finetune use, which is a preprocessed myst subset with - cleaned transcription (in the format w2v2 output) - duration, only 2~20 sec audio entries will be seen in this subset - *local file name: only for reference use locally. ```python from datasets import load_dataset myst = load_dataset("MagicLuke/MyST", split="test") myst = load_dataset("MagicLuke/MyST", "finetune", split="test") ```