markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
hash
stringlengths
32
32
Experiment with window size The code below returns the length of the warmup phase, simulated accross several seeds. This can give us a sense of how long the warmup phase is on average for different seeds. Be mindful that when using too many seeds with a lot of chains, the GPU can run out of memory. The motivation is to check how stable the warmup strategy is when using different window sizes.
target_rhat = 1.01 warmup_window_size = 30 max_num_steps = 1000 // warmup_window_size iteration_after_warmup = np.array([]) for seed in jax.random.split(jax.random.PRNGKey(0), 10): initial_state = initialize((num_super_chains,), key = seed) initial_state = np.repeat(initial_state, num_chains_short // num_super_chains, axis = 0) result_cold, final_kernel_args, rhat_forge = \ forge_chain(target_rhat = target_rhat, warmup_window_size = warmup_window_size, kernel_cold = kernel_cold, initial_state = initial_state, max_num_steps = max_num_steps, seed = seed, monitor = False, use_nested_rhat = True, use_log_joint = False) iteration_after_warmup = np.append(iteration_after_warmup, len(rhat_forge) * warmup_window_size) # print(iteration_after_warmup) print(rhat_forge) print(iteration_after_warmup.mean()) print(iteration_after_warmup.std())
nested_rhat/rhat_locker.ipynb
google-research/google-research
apache-2.0
19b23de286cf0b2304f42e7942a9aa60
Results for the Banana problem Applying the code above for the banana problem with target_rhat = 1.01 use_nested_rhat = True use_log_joint = False we estimate the length of the warmup phase for different window sizes: w = 10, length = 62 +/- 16.12 w = 15, length = 72 +/- 17.41 w = 20, length = 86 +/- 18 w = 30, length = 90 +/- 13.75 w = 60, length = 120 +/- 0.0 Taking into consideration the different granularities, we find the results to be fairly consistent with one another. Let's go back to the original case where we use $\hat R$ and ESS as our stoping criterion. Given the approximate one-to-one map between $\hat R$ and ESS per chain, the two criterion are somewhat redundant, so I'll focus on $\hat R$. When picking the window size, we must contend with the following trade-off: * if the window size is too short, we're unlikely to produce a large enough ESS per chain to hit the target $\hat R$, and this could mean a never-ending warmup phase, or one that only stops once we exceed a maximum number of steps. * if the window size is too large, we may jump pass the optimal point. It's also worth noting that the first window is unlikely to yield satisfactory results, because the intial estimates are overdispered and bias. The first item is largely mitigated by using nested-$\hat R$, since we're then less dependent on the ESS per chain. The second item could be addressed by using a path-finder to initialize the chains and/or by discarding some of the early iterations in a window when computing the diagnostics. One final remark is that using $\hat R$ on the log joint distribution yielded somewhat optimistic results. As Pavel puts it: "log_joint is a pretty bad metric. Generally, for convergence, you prefer to measure the least constrainted directions, and log_joint is typically not that." Draft Code
result_cold, _, final_kernel_args = tfp.mcmc.sample_chain( num_results = 100, current_state = initial_state, kernel = kernel_cold, previous_kernel_results = None, seed = random.PRNGKey(1954), return_final_kernel_results = True) result_warm, _, final_kernel_args = tfp.mcmc.sample_chain( num_results = 50, current_state = result_cold[-1], kernel = kernel_warm, previous_kernel_results = final_kernel_args, seed = random.PRNGKey(1954), return_final_kernel_results = True) nested_rhat(result_warm[1:3], 4) warmup_window_size = 200 current_state = initial_state kernel_warm = tfp.mcmc.HamiltonianMonteCarlo(target_log_prob_fn, init_step_size, 1) kernel_warm = tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptation(kernel_warm, warmup_window_size) kernel_warm = tfp.mcmc.DualAveragingStepSizeAdaptation( kernel_warm, warmup_window_size, target_accept_prob = 0.75, reduce_fn = tfp.math.reduce_log_harmonic_mean_exp) # result_warm, (step_size_saved, num_leapfrog_steps_saved) = tfp.mcmc.sample_chain( # warmup_window_size, current_state, kernel = kernel_warm, # seed = random.PRNGKey(1954), trace_fn = trace_fn) result_warm, kernel_args, final_kernel_args = tfp.mcmc.sample_chain( warmup_window_size, current_state, kernel = kernel_warm, seed = random.PRNGKey(1954), return_final_kernel_results = True) # step_size = step_size_saved[warmup_window_size - 1] # current_state = result_warm[warmup_window_size - 1, :, :] # num_leapfrog_steps = num_leapfrog_steps_saved[warmup_window_size - 1] tfp.mcmc.potential_scale_reduction(result_warm[:, :, :]) # kernel_warm2 = tfp.mcmc.HamiltonianMonteCarlo(target_log_prob_fn, step_size, num_leapfrog_steps) # kernel_warm2 = tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptation(kernel_warm2, warmup_window_size) # kernel_warm2 = tfp.mcmc.DualAveragingStepSizeAdaptation( # kernel_warm2, warmup_window_size, target_accept_prob = 0.75, # reduce_fn = tfp.math.reduce_log_harmonic_mean_exp) # result_warm2, (step_size_saved) = tfp.mcmc.sample_chain( # warmup_window_size, current_state, kernel = kernel_warm2, # seed = random.PRNGKey(1954), trace_fn = trace_fn) result_warm2 = tfp.mcmc.sample_chain( num_results = warmup_window_size, kernel = kernel_warm, current_state = current_state, previous_kernel_results = final_kernel_args, seed = random.PRNGKey(1953) ) tfp.mcmc.potential_scale_reduction(result_warm2.all_states[:, :, :]) print(problem_name) print(max(rhat_warmup)) print(min(ess_warmup)) # print(len(step_size)) # print(step_size[0][warmup_window_size - 1]) max(tfp.mcmc.potential_scale_reduction(result_warm)) # Define kernel for warmup windows (should be the same in the long and short regime) warmup_window_size = 10 if (problem_name == 'Bananas' or problem_name == 'GermanCredit'): kernel_warm_init = tfp.mcmc.HamiltonianMonteCarlo(target_log_prob_fn, init_step_size, 1) kernel_warm_init = tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptation(kernel_warm_init, warmup_window_size) kernel_warm_init = tfp.mcmc.DualAveragingStepSizeAdaptation( kernel_warm_init, warmup_window_size, target_accept_prob = 0.75, #0.75, reduce_fn = tfp.math.reduce_log_harmonic_mean_exp) result_warm, (step_size, max_trajectory_length) = tfp.mcmc.sample_chain( warmup_window_size, initial_state, kernel = kernel_warm_init, seed = random.PRNGKey(1954), trace_fn = trace_fn) print(step_size[len(step_size) - 1]) print(max_trajectory_length[len(max_trajectory_length) - 1]) print(initial_state.shape) print(result_warm[warmup_window_size, :, :]) # To run next window, define a new transition kernel # REMARK: the maximum trajectory length isn't, if my understanding is correct, # a tuning parameter; rather something that get's calculated at each step. So # there's no need to pass it on. kernel_warm = tfp.mcmc.HamiltonianMonteCarlo(target_log_prob_fn, step_size[len(step_size) - 1], 1) kernel_warm = tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptation(kernel_warm, warmup_window_size) kernel_warm = tfp.mcmc.DualAveragingStepSizeAdaptation( kernel_warm_init, warmup_window_size, target_accept_prob = 0.75, reduce_fn = tfp.math.reduce_log_harmonic_mean_exp) result_warm2, (step_size, max_trajectory_length) = tfp.mcmc.sample_chain( warmup_window_size, initial_state, kernel = kernel_warm, seed = random.PRNGKey(1954), trace_fn = trace_fn) print(result_warm.shape) print(step_size.shape) print(max_trajectory_length.shape) step_size[len(step_size) - 1] # nested_rhat(result_short.all_states, num_super_chains) ## Sandbox # Pool chains into super chains # num_super_chains = 4 # num_chains_short // num_chains_long # num_sub_chains = num_chains_short // num_super_chains # used_samples = num_samples # 5 # 2 * target_iter_mean # target_iter_mean # result_state = result_short.all_states[0:used_samples, :, :] # chain_states = result_state.reshape(used_samples, num_sub_chains, # -1, num_dimensions) # independent_chains_ndims = 1 # sample_ndims = 1 # sample_axis = tf.range(0, sample_ndims) # chain_axis # used_samples = result_state.shape[0] # num_sub_chains = result_state.shape[1] // num_super_chains # num_dimensions = result_state.shape[2] # chain_states = result_state.reshape(used_samples, -1, num_sub_chains, # num_dimensions) # state = tf.convert_to_tensor(chain_states, name = 'state') # mean_chain = tf.reduce_mean(state, axis = 0) # mean_super_chain = tf.reduce_mean(state, axis = [0, 2]) # variance_chain = _reduce_variance(state, axis = 0, biased = False) # variance_super_chain = _reduce_variance(mean_chain, axis = 1, biased = False) \ # + tf.reduce_mean(variance_chain, axis = 1) # W = tf.reduce_mean(variance_super_chain, axis = 0) # B = _reduce_variance(mean_super_chain, axis = 0, biased = False) # rhat = tf.sqrt((W + B) / W) # print(rhat) # print(mean_chain.shape) # print(mean_super_chain.shape) # print("mean_super_chain: ", mean_super_chain) # print(variance_chain.shape) # print(variance_super_chain.shape) # print(state.shape) # (5, 250, 4, 2) # print(result_state.shape) # (5, 1000, 2) # # 'manually' compute the mean of each super chain. # print(np.mean(result_state[:, 0:250, 0])) # print(np.mean(result_state[:, 250:500, 0])) # print(np.mean(result_state[:, 500:750, 0])) # print(np.mean(result_state[:, 750:1000, 0])) # # compute the means after reshaping the results. Get agreement! # print(np.mean(chain_states[:, 0, :, 0])) # print(np.mean(chain_states[:, 1, :, 0])) # print(np.mean(chain_states[:, 2, :, 0])) # print(np.mean(chain_states[:, 3, :, 0])) # print(result_state[:, 250, 0]) # print(chain_states[:, 0, 1, 0]) # simple_chain = np.array([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]]) # simple_chain.shape # (4, 6) # chain_reshape = simple_chain.reshape(4, 2, -1) # chain_reshape.shape # (4, 2, 3) # np.mean(chain_reshape, axis = 0) # returns mean for each chain # np.mean(chain_reshape[:, 0, :]) # 1 # np.mean(chain_reshape[:, 1, :]) # 4 # np.mean(simple_chain[:, 0:2]) # 1 # np.mean(simple_chain[:, 3:6]) # 4 -- but it seems index should be 3:5 # # simple_chain[:, 3:6] # ## Sandbox # tf.compat.v1.disable_eager_execution() # need to disable eager in TF2.x # state = result_short.all_states[1:range_iter[index], :, :] # n = state.shape[0] # m = state.shape[1] # sample_ndims = 1 # independent_chains_ndims = 1 # sample_axis = tf.range(0, sample_ndims) # CHECK # chain_axis = 0 # sample_and_chain_axis = tf.range(0, sample_ndims + independent_chains_ndims) # CHECK # with tf.name_scope('potential_scale_reduction_single_state'): # state = tf.convert_to_tensor(state, name = 'state') # # CHECK: do we need to define a tf scope? # n_samples = tf.compat.dimension_value(state.shape[0]) # # n = _axis_size(state, sample_axis) # # m = _axis_size(state, chain_axis) # # NOTE: These lines prompt the error message once the session is run. # # x = tf.reduce_mean(state, axis=sample_axis, keepdims=True) # # x_tf = tf.convert_to_tensor(x, name = 'x') # # n_tf = _axis_size(x_tf) # b_div_n = _reduce_variance( # tf.reduce_mean(state, axis = 0, keepdims = False), # sample_and_chain_axis, # sample and chain axis # biased = False # ) # w = tf.reduce_mean( # _reduce_variance(state, sample_axis, keepdims = False, # biased = False), # axis = sample_and_chain_axis # ) # # TODO: work out n and m from the number of chains being passed. # # n = target_iter_mean # # m = num_chains # sigma_2_plus = ((n - 1) / n) * w + b_div_n # rhat = ((m + 1.) / m) * sigma_2_plus / w - (n - 1.) / (m * n) # # Launch the graph in a session. (TensorFlow uses differed action, # # so need to explicitly request evaluation) # sess = tf.compat.v1.Session() # print(sess.run(rhat))
nested_rhat/rhat_locker.ipynb
google-research/google-research
apache-2.0
37bc230e0c43d73b5e87fc047906c184
Otherwise, set your project ID here.
if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "qwiklabs-gcp-00-f25b80479c89" # @param {type:"string"}
courses/machine_learning/deepdive2/machine_learning_in_the_enterprise/solutions/sdk-custom-image-classification-batch.ipynb
GoogleCloudPlatform/training-data-analyst
apache-2.0
c77a818fba59556a8a1e5cd00811bda3
Create a Cloud Storage bucket The following steps are required, regardless of your notebook environment. When you submit a training job using the Cloud SDK, you upload a Python package containing your training code to a Cloud Storage bucket. Vertex AI runs the code from this package. In this tutorial, Vertex AI also saves the trained model that results from your job in the same bucket. Using this model artifact, you can then create Vertex AI model resources. Set the name of your Cloud Storage bucket below. It must be unique across all Cloud Storage buckets. You may also change the REGION variable, which is used for operations throughout the rest of this notebook. Make sure to choose a region where Vertex AI services are available. You may not use a Multi-Regional Storage bucket for training with Vertex AI.
# Fill in your bucket name and region BUCKET_NAME = "gs://qwiklabs-gcp-00-f25b80479c89" # @param {type:"string"} REGION = "us-central1" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://qwiklabs-gcp-00-f25b80479c89": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP
courses/machine_learning/deepdive2/machine_learning_in_the_enterprise/solutions/sdk-custom-image-classification-batch.ipynb
GoogleCloudPlatform/training-data-analyst
apache-2.0
82d2468bda242ed029c84235cd9f82df
Train the model Define your custom training job on Vertex AI. Use the CustomTrainingJob class to define the job, which takes the following parameters: display_name: The user-defined name of this training pipeline. script_path: The local path to the training script. container_uri: The URI of the training container image. requirements: The list of Python package dependencies of the script. model_serving_container_image_uri: The URI of a container that can serve predictions for your model โ€” either a prebuilt container or a custom container. Use the run function to start training, which takes the following parameters: args: The command line arguments to be passed to the Python script. replica_count: The number of worker replicas. model_display_name: The display name of the Model if the script produces a managed Model. machine_type: The type of machine to use for training. accelerator_type: The hardware accelerator type. accelerator_count: The number of accelerators to attach to a worker replica. The run function creates a training pipeline that trains and creates a Model object. After the training pipeline completes, the run function returns the Model object.
# TODO # Define your custom training job and use the run function to start the training job = aiplatform.CustomTrainingJob( display_name=JOB_NAME, script_path="task.py", container_uri=TRAIN_IMAGE, requirements=["tensorflow_datasets==1.3.0"], model_serving_container_image_uri=DEPLOY_IMAGE, ) MODEL_DISPLAY_NAME = "cifar10-" + TIMESTAMP # TODO # Start the training if TRAIN_CPU: model = job.run( model_display_name=MODEL_DISPLAY_NAME, args=CMDARGS, replica_count=1, machine_type=TRAIN_COMPUTE, accelerator_type=TRAIN_CPU.name, accelerator_count=TRAIN_NCPU, ) else: model = job.run( model_display_name=MODEL_DISPLAY_NAME, args=CMDARGS, replica_count=1, machine_type=TRAIN_COMPUTE, accelerator_count=0, )
courses/machine_learning/deepdive2/machine_learning_in_the_enterprise/solutions/sdk-custom-image-classification-batch.ipynb
GoogleCloudPlatform/training-data-analyst
apache-2.0
39d51c60fc98f78687336a98550de69f
Send the prediction request To make a batch prediction request, call the model object's batch_predict method with the following parameters: - instances_format: The format of the batch prediction request file: "jsonl", "csv", "bigquery", "tf-record", "tf-record-gzip" or "file-list" - prediction_format: The format of the batch prediction response file: "jsonl", "csv", "bigquery", "tf-record", "tf-record-gzip" or "file-list" - job_display_name: The human readable name for the prediction job. - gcs_source: A list of one or more Cloud Storage paths to your batch prediction requests. - gcs_destination_prefix: The Cloud Storage path that the service will write the predictions to. - model_parameters: Additional filtering parameters for serving prediction results. - machine_type: The type of machine to use for training. - accelerator_type: The hardware accelerator type. - accelerator_count: The number of accelerators to attach to a worker replica. - starting_replica_count: The number of compute instances to initially provision. - max_replica_count: The maximum number of compute instances to scale to. In this tutorial, only one instance is provisioned. Compute instance scaling You can specify a single instance (or node) to process your batch prediction request. This tutorial uses a single node, so the variables MIN_NODES and MAX_NODES are both set to 1. If you want to use multiple nodes to process your batch prediction request, set MAX_NODES to the maximum number of nodes you want to use. Vertex AI autoscales the number of nodes used to serve your predictions, up to the maximum number you set. Refer to the pricing page to understand the costs of autoscaling with multiple nodes.
MIN_NODES = 1 MAX_NODES = 1 # The name of the job BATCH_PREDICTION_JOB_NAME = "cifar10_batch-" + TIMESTAMP # Folder in the bucket to write results to DESTINATION_FOLDER = "batch_prediction_results" # The Cloud Storage bucket to upload results to BATCH_PREDICTION_GCS_DEST_PREFIX = BUCKET_NAME + "/" + DESTINATION_FOLDER # TODO # Make SDK batch_predict method call batch_prediction_job = model.batch_predict( instances_format="jsonl", predictions_format="jsonl", job_display_name=BATCH_PREDICTION_JOB_NAME, gcs_source=BATCH_PREDICTION_GCS_SOURCE, gcs_destination_prefix=BATCH_PREDICTION_GCS_DEST_PREFIX, model_parameters=None, machine_type=DEPLOY_COMPUTE, accelerator_type=DEPLOY_CPU, accelerator_count=DEPLOY_NCPU, starting_replica_count=MIN_NODES, max_replica_count=MAX_NODES, sync=True, )
courses/machine_learning/deepdive2/machine_learning_in_the_enterprise/solutions/sdk-custom-image-classification-batch.ipynb
GoogleCloudPlatform/training-data-analyst
apache-2.0
99afdfb8e80024c3fc8bcb57bc32e037
Cleaning up To clean up all Google Cloud resources used in this project, you can delete the Google Cloud project you used for the tutorial. Otherwise, you can delete the individual resources you created in this tutorial: Training Job Model Cloud Storage Bucket
delete_training_job = True delete_model = True # Warning: Setting this to true will delete everything in your bucket delete_bucket = False # TODO # Delete the training job job.delete() # TODO # Delete the model model.delete() if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil -m rm -r $BUCKET_NAME
courses/machine_learning/deepdive2/machine_learning_in_the_enterprise/solutions/sdk-custom-image-classification-batch.ipynb
GoogleCloudPlatform/training-data-analyst
apache-2.0
61031f757d0fd0d520ab1e5073376fbc
์•„์ฃผ ๋ฉ‹์žˆ์–ด ๋ณด์ด๊ธฐ๋Š” ํ•˜์ง€๋งŒ, ๋”ฑํžˆ ์–ด๋–ค ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€๋Š” ์•Š๋Š”๋‹ค. ๋‹จ์–ด๊ฐ€ ๊ตฌ์ธ ๊ด‘๊ณ ์— ๋“ฑ์žฅํ•˜๋Š” ๋นˆ๋„๋ฅผ ๊ฐ€๋กœ์ถ•, ๋‹จ์–ด๊ฐ€ ์ด๋ ฅ์„œ์— ๋“ฑ์žฅํ•˜๋Š” ๋นˆ๋„๋ฅผ ์„ธ๋กœ์ถ•
def text_size(total): """equals 8 if total is 0, 28 if total is 200""" return 8 + total / 200 * 20 for word, job_popularity, resume_popularity in data: plt.text(job_popularity, resume_popularity, word, ha='center', va='center', size=text_size(job_popularity + resume_popularity)) plt.xlabel("Popularity on Job Postings") plt.ylabel("Popularity on Resumes") plt.axis([0, 100, 0, 100]) plt.show()
notebook/ch20_natural_language_processing.ipynb
rnder/data-science-from-scratch
unlicense
fac0b44181179f3d7c8f9cbbffd5354d
2) n-gram ๋ชจ๋ธ
#์œ ๋‹ˆ์ฝ”๋“œ ๋”ฐ์˜ดํ‘œ๋ฅผ ์ผ๋ฐ˜ ์•„์Šคํ‚ค ๋”ฐ์˜ดํ‘œ๋กœ ๋ณ€ํ™˜ def fix_unicode(text): return text.replace(u"\u2019", "'") def get_document(): url = "http://radar.oreilly.com/2010/06/what-is-data-science.html" html = requests.get(url).text soup = BeautifulSoup(html, 'html5lib') #content = soup.find("div", "entry-content") # NoneType Error content = soup.find("div", "article-body") # find article-body div regex = r"[\w']+|[\.]" # ๋‹จ์–ด๋‚˜ ๋งˆ์นจํ‘œ์— ํ•ด๋‹นํ•˜๋Š” ๋ฌธ์ž์—ด document = [] for paragraph in content("p"): words = re.findall(regex, fix_unicode(paragraph.text)) document.extend(words) return document document = get_document() #document ###+์ˆœ์ฐจ์ ์œผ๋กœ ๋“ฑ์žฅํ•˜๋Š” ๋‹จ์–ด๋“ค์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์–ป๊ธฐ ์œ„ํ•จ? a = ["We've",'all','heard', 'it'] b = ["We've",'all','heard', 'it'] list(zip(a,b)) bigrams = list(zip(document, document[1:])) transitions = defaultdict(list) for prev, current in bigrams: transitions[prev].append(current) #transitions transitions transitions['.'] #์‹œ์ž‘ ๋‹จ์–ด๋ฅผ ์„ ํƒํ•ด์•ผ ํ•˜๋Š”๋ฐ,, ๋งˆ์นจํ‘œ ๋‹ค์Œ์— ๋“ฑ์žฅํ•˜๋Š” ๋‹จ์–ด๋“ค์ค‘ ์ž„์˜๋กœ ํ•˜๋‚˜๋ฅผ ์„ ํƒํ•˜๋Š”๊ฒƒ๋„ ๋ฐฉ๋ฒ•. def generate_using_bigrams(transitions): current = "." # ๋‹ค์Œ๋‹จ์–ด๊ฐ€ ๋ฌธ์žฅ์˜ ์‹œ์ž‘์ด๋ผ๋Š” ๊ฒƒ์„ ์˜๋ฏธ result = [] while True: next_word_candidates = transitions[current] # bigrams (current, _) current = random.choice(next_word_candidates) # choose one at random result.append(current) # append it to results if current == ".": return " ".join(result) # if "." ์ข…๋ฃŒ random.seed(0) print("bigram sentences") for i in range(10): print(i, generate_using_bigrams(transitions)) print() #ํ„ฐ๋ฌด๋‹ˆ ์—†๋Š” ๋ฌธ์žฅ์ด์ง€๋งŒ, ๋ฐ์ดํ„ฐ ๊ณผํ•™๊ณผ ๊ด€๋ จ๋˜์–ด ๋ณด์ผ๋ฒ•ํ•œ ์›น์‚ฌ์ดํŠธ๋ฅผ ๋งŒ๋“ค๋•Œ ์‚ฌ์šฉํ•  ๋งŒํ•œ ๊ฒƒ๋“ค์ด๊ธฐ๋„ ํ•˜๋‹ค...?
notebook/ch20_natural_language_processing.ipynb
rnder/data-science-from-scratch
unlicense
41393899a46e208187ae9c828c9e2d36
bigram : ๋‘๊ฐœ์˜ ์—ฐ์†์ ์ธ ๋‹จ์–ด trigram : 3๊ฐœ์˜ ์—ฐ์†์ ์ธ ๋‹จ์–ด๋ฅผ ๋ณด๋Š”..(n-gram๋„ ์žˆ๋””๋งŒ 3๊ฐœ ์ •๋„๋งŒ ๋ด๋„ ์ถฉ๋ถ„..)
###+์ˆœ์ฐจ์ ์œผ๋กœ ๋“ฑ์žฅํ•˜๋Š” ๋‹จ์–ด๋“ค์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์–ป๊ธฐ ์œ„ํ•จ? a = ["We've",'all','heard', 'it'] b = ["We've",'all','heard', 'it'] b = ["We've",'all','heard', 'it'] list(zip(a,b)) #trigrams : ์ง์ „ ๋‘๊ฐœ์˜ ๋‹จ์–ด์— ์˜ํ•ด ๋‹ค์Œ ๋‹จ์–ด๊ฐ€ ๊ฒฐ์ •๋จ trigrams = list(zip(document, document[1:], document[2:])) trigram_transitions = defaultdict(list) starts = [] for prev, current, next in trigrams: if prev == ".": # ๋งŒ์•ฝ ์ด์ „๋‹จ์–ด๊ฐ€ ๋งˆ์นจํ‘œ ์˜€๋‹ค๋ฉด starts.append(current) # ์ด์ œ ์ƒˆ๋กœ์šด ๋‹จ์–ด์˜ ์‹œ์ž‘์„ ์˜๋ฏธ trigram_transitions[(prev, current)].append(next) #์šด์žฅ์€ ์•ž์„œ ๋ฐ”์ด๊ทธ๋žจ๊ณผ ๋น„์Šทํ•œ ๋ฐฉ์‹์œผ๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค def generate_using_trigrams(starts, trigram_transitions): current = random.choice(starts) # choose a random starting word prev = "." # and precede it with a '.' result = [current] while True: next_word_candidates = trigram_transitions[(prev, current)] next = random.choice(next_word_candidates) prev, current = current, next result.append(current) if current == ".": return " ".join(result) print("trigram sentences") for i in range(10): print(i, generate_using_trigrams(starts, trigram_transitions)) print() #์กฐ๊ธˆ ๋” ๊ดœ์ฐฎ์€ ๋ฌธ์žฅ..
notebook/ch20_natural_language_processing.ipynb
rnder/data-science-from-scratch
unlicense
ef261ea4cadbbc273da1d07a42e021e9
trigram์„ ์‚ฌ์šฉํ•˜๋ฉด ๋‹ค์Œ ๋‹จ์–ด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฐ ๋‹จ๊ณ„์—์„œ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋Š” ๋‹จ์–ด์˜ ์ˆ˜๊ฐ€ bigram์„ ์‚ฌ์šฉํ•  ๋•Œ๋งˆ๋‹ค ํ›จ์”ฌ ์ ์–ด์กŒ๊ณ , ์„ ํƒํ•  ์ˆ˜ ์žˆ๋Š” ๋‹จ์–ด๊ฐ€ ๋”ฑ ํ•˜๋‚˜๋งŒ ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ๋„ ๋งŽ์•˜์„ ๊ฒƒ์ด๋‹ค. ์ฆ‰, ์ด๋ฏธ ์–ด๋–ค ๋ฌธ์„œ์ƒ์— ์กด์žฌํ–ˆ๋˜ ๋ฌธ์žฅ(๋˜๋Š” ๊ธด๋ฌธ๊ตฌ)ํ•˜๋‚˜๋ฅผ ๊ทธ๋Œ€๋กœ ์ƒ์„ฑํ–ˆ์„ ๊ฐ€๋Šฅ์„ฑ๋„ ์žˆ๋‹ค. ์ด๋Š” ๋ฐ์ดํ„ฐ ๊ณผํ•™์— ๋Œ€ํ•œ ๋” ๋งŽ์€ ์—์„ธ์ด๋“ค์„ ๋ชจ์œผ๊ณ , ์ด๋ฅผ ํ† ๋Œ€๋กœ n-gram ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธ! <p><span style="color:blue">**3) ๋ฌธ๋ฒ•**</span></p> ๋ฌธ๋ฒ•์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๋ง์ด ๋˜๋Š” ๋ฌธ์žฅ์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ ํ’ˆ์‚ฌ๋ž€ ๋ฌด์—‡์ด๋ฉฐ, ๊ทธ๊ฒƒ๋“ค์„ ์–ด๋–ป๊ฒŒ ์กฐํ•ฉํ•˜๋ฉด ๋ฌธ์žฅ์ด ๋˜๋Š”์ง€.. ๋ช…์‚ฌ ๋‹ค์Œ์—๋Š” ํ•ญ์ƒ ๋™์‚ฌ๊ฐ€ ๋”ฐ๋ฅธ๋‹ค...๋Š” ๋ฐฉ์‹
#ํ•ญ๋ชฉ ์•ž์— ๋ฐ‘์ค„์ด ์žˆ์œผ๋ฉด ๋” ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋Š” ๊ทœ์น™์ด๊ณ , ๋‚˜๋จธ์ง€๋Š” ์ข…๊ฒฐ์–ด ๋ผ๊ณ ํ•˜์ž. # ์˜ˆ, '_s'๋Š” ๋ฌธ์žฅ(sentence) ๊ทœ์น™์„ ์˜๋ฏธ, '_NP'๋Š” ๋ช…์‚ฌ๊ตฌ(noun phrase), '_VP'๋Š” ๋™์‚ฌ๊ตฌ grammar = { "_S" : ["_NP _VP"], "_NP" : ["_N", "_A _NP _P _A _N"], "_VP" : ["_V", "_V _NP"], "_N" : ["data science", "Python", "regression"], "_A" : ["big", "linear", "logistic"], "_P" : ["about", "near"], "_V" : ["learns", "trains", "tests", "is"] }
notebook/ch20_natural_language_processing.ipynb
rnder/data-science-from-scratch
unlicense
79b3aa27afea12a0f30f2841fd714d3e
~~~ ['_S'] ['_NP','_VP'] ['_N','_VP'] ['Python','_VP'] ['Python','_V','_NP'] ['Python','trains','_NP'] ['Python','trains','_A','_NP','_P','_A','_N'] ['Python','trains','logistic','_NP','_P','_A','_N'] ['Python','trains','logistic','_N','_P','_A','_N'] ['Python','trains','logistic','data science','_P','_A','_N'] ['Python','trains','logistic','data science','about','_A', '_N'] ['Python','trains','logistic','data science','about','logistic','_N'] ['Python','trains','logistic','data science','about','logistic','Python'] ~~~
# ํŠน์ • ํ•ญ๋ชฉ์ด ์ข…๊ฒฐ์–ด์ธ์ง€ ์•„๋‹Œ์ง€? def is_terminal(token): return token[0] != "_" # ๊ฐ ํ•ญ๋ชฉ์„ ๋Œ€์ฒด ๊ฐ€๋Šฅํ•œ ๋‹ค๋ฅธ ํ•ญ๋ชฉ ๋˜๋Š” ํ•ญ๋ชฉ๋“ค๋กœ ๋ณ€ํ™˜์‹œํ‚ค๋Š” ํ•จ์ˆ˜ def expand(grammar, tokens): for i, token in enumerate(tokens): # ์ข…๊ฒฐ์–ด๋Š” ๊ฑด๋„ˆ๋œ€ if is_terminal(token): continue # ์ข…๊ฒฐ์–ด๊ฐ€ ์•„๋‹Œ ๋‹จ์–ด๋Š” ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ํ•ญ๋ชฉ์„ ์ž„์˜๋กœ ์„ ํƒ replacement = random.choice(grammar[token]) if is_terminal(replacement): tokens[i] = replacement else: tokens = tokens[:i] + replacement.split() + tokens[(i+1):] # ์ƒˆ๋กœ์šด ๋‹จ์–ด์˜ list์— expand๋ฅผ ์ ์šฉ return expand(grammar, tokens) # ์ด์ œ ๋ชจ๋“  ๋‹จ์–ด๊ฐ€ ์ข…๊ฒฐ์–ด ์ด๊ธฐ๋•Œ๋ฌธ์— ์ข…๋ฃŒ return tokens def generate_sentence(grammar): return expand(grammar, ["_S"]) print("grammar sentences") for i in range(10): print(i, " ".join(generate_sentence(grammar))) print()
notebook/ch20_natural_language_processing.ipynb
rnder/data-science-from-scratch
unlicense
98cb6a3b6bd5377dc077b16b7b98f4c8
<p><span style="color:blue">**5) ํ† ํ”ฝ ๋ชจ๋ธ๋ง**</span></p>
#๋‹จ์–ด์˜ ๋ถ„ํฌ์— ๋”ฐ๋ผ ๊ฐ ํ† ํ”ฝ์— weight๋ฅผ ํ• ๋‹น def sample_from(weights): '''i๋ฅผ weight[i] / sum(weight)์˜ ํ™•๋ฅ ๋กœ ๋ฐ˜ํ™˜''' total = sum(weights) rnd = total * random.random() # 0๊ณผ total ์‚ฌ์ด๋ฅผ ๊ท ์ผํ•˜๊ฒŒ ์„ ํƒ for i, w in enumerate(weights): rnd -= w # return the smallest i such that if rnd <= 0: return i # sum(weights[:(i+1)]) >= rnd
notebook/ch20_natural_language_processing.ipynb
rnder/data-science-from-scratch
unlicense
8b6fa16f2d15389f88fcd74208c723c9
~~~ ๊ฒฐ๊ตญ, weight๊ฐ€ [1,1,3] ์ด๋ผ๋ฉด 1/5์˜ ํ™•๋ฃ”๋กœ 0, 1/5์˜ ํ™•๋ฅ ๋กœ 1, 3/5์˜ ํ™•๋ฅ ๋กœ 2๋ฅผ ๋ฐ˜ํ™˜ ~~~
documents = [ ["Hadoop", "Big Data", "HBase", "Java", "Spark", "Storm", "Cassandra"], ["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"], ["Python", "scikit-learn", "scipy", "numpy", "statsmodels", "pandas"], ["R", "Python", "statistics", "regression", "probability"], ["machine learning", "regression", "decision trees", "libsvm"], ["Python", "R", "Java", "C++", "Haskell", "programming languages"], ["statistics", "probability", "mathematics", "theory"], ["machine learning", "scikit-learn", "Mahout", "neural networks"], ["neural networks", "deep learning", "Big Data", "artificial intelligence"], ["Hadoop", "Java", "MapReduce", "Big Data"], ["statistics", "R", "statsmodels"], ["C++", "deep learning", "artificial intelligence", "probability"], ["pandas", "R", "Python"], ["databases", "HBase", "Postgres", "MySQL", "MongoDB"], ["libsvm", "regression", "support vector machines"] ] #์ด K=4๊ฐœ์˜ ํ† ํ”ฝ์„ ๋ฐ˜ํ™˜ํ•ด ๋ณด์ž! K = 4 #๊ฐ ํ† ํ”ฝ์ด ๊ฐ ๋ฌธ์„œ์— ํ• ๋‹น๋˜๋Š” ํšŸ์ˆ˜ (Counter๋Š” ๊ฐ๊ฐ์˜ ๋ฌธ์„œ๋ฅผ ์˜๋ฏธ) document_topic_counts = [Counter() for _ in documents] #๊ฐ ๋‹จ์–ด๊ฐ€ ๊ฐ ํ† ํ”ฝ์— ํ• ๋‹น๋˜๋Š” ํšŸ์ˆ˜ (Counter๋Š” ๊ฐ ํ† ํ”ฝ์„ ์˜๋ฏธ) topic_word_counts = [Counter() for _ in range(K)] #๊ฐ ํ† ํ”ฝ์— ํ• ๋‹น์ฃ„๋Š” ์ด ๋‹จ์–ด์ˆ˜ (๊ฐ๊ฐ์˜ ์ˆซ์ž๋Š” ๊ฐ ํ† ํ”ฝ์„ ์˜๋ฏธ) topic_counts = [0 for _ in range(K)] #๊ฐ ๋ฌธ์„œ์— ํฌํ•จ๋˜๋Š” ์ด ๋‹จ์–ด์ˆ˜ (๊ฐ๊ฐ์˜ ์ˆซ์ž๋Š” ๊ฐ ๋ฌธ์„œ๋ฅผ ์˜๋ฏธ) document_lengths = [len(d) for d in documents] #๋‹จ์–ด ์ข…๋ฅ˜์˜ ์ˆ˜ distinct_words = set(word for document in documents for word in document) W = len(distinct_words) #์ด ๋ฌธ์„œ์˜ ์ˆ˜ D = len(documents) # documents[3]์˜ ๋ฌธ์„œ์ค‘ ํ† ํ”ฝ 1๊ณผ ๊ด€๋ จ ์žˆ๋Š” ๋‹จ์–ด์˜ ์ˆ˜๋ฅผ ๊ตฌํ•˜๋ฉด. document_topic_counts[3][1] #npl๋ผ๋Š” ๋‹จ์–ด๊ฐ€ ํ† ํ”ฝ 2์™€ ์—ฐ๊ด€์ง€์–ด ๋‚˜์˜ค๋Š” ํšŸ์ˆ˜๋Š”? topic_word_counts[2]["nlp"] def p_topic_given_document(topic, d, alpha=0.1): """๋ฌธ์„œ d์˜ ๋ชจ๋“  ๋‹จ์–ด ์ค‘์—์„œ topic์— ์†ํ•˜๋Š” ๋‹จ์–ด์˜ ๋น„์œจ (smoothing์„ ๋”ํ•œ ๋น„์œจ)""" return ((document_topic_counts[d][topic] + alpha) / (document_lengths[d] + K * alpha)) def p_word_given_topic(word, topic, beta=0.1): """topic์— ์†ํ•œ ๋‹จ์–ด ์ค‘์—์„œ word์˜ ๋น„์œจ (smoothing์„ ๋”ํ•œ ๋น„์œจ)""" return ((topic_word_counts[topic][word] + beta) / (topic_counts[topic] + W * beta)) def topic_weight(d, word, k): """๋ฌธ์„œ์™€ ๋ฌธ์„œ์˜ ๋‹จ์–ด๊ฐ€ ์ฃผ์–ด์ง€๋ฉด, k๋ฒˆ์งธ ํ† ํ”ฝ์˜ weight๋ฅผ ๋ฐ˜ํ™˜""" return p_word_given_topic(word, k) * p_topic_given_document(k, d) def choose_new_topic(d, word): return sample_from([topic_weight(d, word, k) for k in range(K)]) random.seed(0) document_topics = [[random.randrange(K) for word in document] for document in documents] for d in range(D): for word, topic in zip(documents[d], document_topics[d]): document_topic_counts[d][topic] += 1 topic_word_counts[topic][word] += 1 topic_counts[topic] += 1 for iter in range(1000): for d in range(D): for i, (word, topic) in enumerate(zip(documents[d], document_topics[d])): # remove this word / topic from the counts # so that it doesn't influence the weights document_topic_counts[d][topic] -= 1 topic_word_counts[topic][word] -= 1 topic_counts[topic] -= 1 document_lengths[d] -= 1 # choose a new topic based on the weights new_topic = choose_new_topic(d, word) document_topics[d][i] = new_topic # and now add it back to the counts document_topic_counts[d][new_topic] += 1 topic_word_counts[new_topic][word] += 1 topic_counts[new_topic] += 1 document_lengths[d] += 1 #ํ† ํ”ฝ์˜ ์˜๋ฏธ๋ฅผ ์ฐพ๊ธฐ์œ„ํ•ด ๊ฐ ํ† ํ”ฝ์— ๋Œ€ํ•ด ๊ฐ€์žฅ ์˜ํ–ฅ๋ ฅ์ด ๋†’์€(weight ๊ฐ’์ด ํฐ) ๋‹จ์–ด๋“ค์ด ๋ฌด์–ธ์ธ์ง€ ๋ณด์ž for k, word_counts in enumerate(topic_word_counts): for word, count in word_counts.most_common(): if count > 0: print(k, word, count) # ๋‹จ์–ด๋“ค์„ ๋ณด๊ณ  ๋‹ค์Œ๊ณ  ใ…๊ฐ™์ด ์ด๋ฆ„์„ ์ง€์ •ํ•ด์ฃผ์ž topic_names = ["Big Data and programming languages", "databases", "machine learning", "statistics"] #์‚ฌ์šฉ์ž์˜ ๊ด€์‹ฌ์‚ฌ๊ฐ€ ๋ฌด์—‡์ธ์ง€ ์•Œ์•„๋ณผ ์ˆ˜ ์žˆ๋‹ค. for document, topic_counts in zip(documents, document_topic_counts): print(document) for topic, count in topic_counts.most_common(): if count > 0: print(topic_names[topic], count) print()
notebook/ch20_natural_language_processing.ipynb
rnder/data-science-from-scratch
unlicense
5b5e1326e96aef4b39da4f2783dd494a
We will vary the fake root we introduced to obtain the phase-mismatch diagram. That is, the phase mismatch $\delta k$ is going to be some linear function of $z$.
plt.plot(x, [abs(f(z))**2 for z in x])
Testing_make_nonlinear_interaction.ipynb
tabakg/potapov_interpolation
gpl-3.0
eccb0cc625cf29f1c6141137fcdca279
What happens when we change the indices of refraction for the different modes? The phase-mismatch will shift depending on where the new $\delta k = 0$ occurs. The width of the peak may also change if the indices of refraction are large.
indices_of_refraction=[3.,5.,10.] f = lambda z: functions.make_nonlinear_interaction(roots_to_use(z), modes_to_use,Ex.delays,0,0,0.1,plus_or_minus_arr,indices_of_refraction=indices_of_refraction) plt.plot(x, [abs(f(z))**2 for z in x])
Testing_make_nonlinear_interaction.ipynb
tabakg/potapov_interpolation
gpl-3.0
7555a98d6a632e7866f6cd51fa189d6a
Generating a Hamiltonian from a model In this section we will use example 3 to generate a Hamiltonian with nonlinaer coefficients resulting when inserting a nonlinearity in a circuit. We will assume that the nonlinearity is inserting at the delay line of index 0 corresponding to $\tau_1$.
import sympy as sp import itertools from qnet.algebra.circuit_algebra import * Ex = Time_Delay_Network.Example3(r1 = 0.9, r3 = 0.9, max_linewidth=35.,max_freq=25.) Ex.run_Potapov() E = Ex.E roots = Ex.roots M1 = Ex.M1 delays = Ex.delays modes = functions.spatial_modes(roots,M1,E) roots ## nonlinearity information delay_index = 0 start_nonlin = 0. duration_nonlin = .1 NONLIN_WEIGHT = 10. m = len(roots) indices = range(m) chi_order = 3 ## i.e. chi-3 nonlinearity plus_minus_combinations = list(itertools.combinations(range(chi_order + 1), 2)) ## pick which fields are annihilated list_of_pm_arr = [] for tup in plus_minus_combinations: ls = [1]*(chi_order+1) for i in tup: ls[i]=-1 list_of_pm_arr.append(ls) a = [sp.symbols('a_'+str(i)) for i in range(m)] a_H = [sp.symbols('a^H_'+str(i)) for i in range(m)] A,B,C,D = Potapov.get_Potapov_ABCD(Ex.roots,Ex.vecs,Ex.T,z=0.) #Omega = (A-A.H)/(2j) #### closed dynamics only. i.e. not damping Omega = -1j*A ## full dynamics H_lin_sp = 0 ## with sympy only for i in range(m): for j in range(m): H_lin_sp += a_H[i]*a[j]*Omega[i,j] def make_nonlin_term_sp(combination,pm_arr): ''' Make symbolic term With sympy only ''' r = 1 for index,sign in zip(combination,pm_arr): if sign == 1: r*= a_H[index] else: r *= a[index] return r
Testing_make_nonlinear_interaction.ipynb
tabakg/potapov_interpolation
gpl-3.0
371fa942eef97f4390f46524eb7f2b02
Let's impose a large 'index of refraction'. In the future we will replaces this by better conditions for phase-mismatch, including realistic values. For now, this will narrow the gain versus $\Delta k$ function so that few interaction terms remain.
def weight(combination,pm_arr): roots_to_use = np.array([roots[i].imag for i in combination]) modes_to_use = [modes[i] for i in combination] return functions.make_nonlinear_interaction(roots_to_use, modes_to_use, delays, delay_indices, start_nonlin,duration_nonlin,pm_arr, indices_of_refraction = [1000.]*len(combination), eps=1e-12,) ## TODO: add a priori check to restrict exponential growth weights = {} count = 0 for pm_arr in list_of_pm_arr: field_combinations = itertools.combinations_with_replacement(range(m), chi_order+1) for combination in field_combinations: count += 1 weights[tuple(combination),tuple(pm_arr)] = weight(combination,pm_arr) print count plt.hist([abs(x) for x in [weights[key] for key in weights] ],bins=100);
Testing_make_nonlinear_interaction.ipynb
tabakg/potapov_interpolation
gpl-3.0
ef0767af2f940ff17b364edb8d439d50
As we see above, most of the interactions are negligible. Let's drop them out.
significant_weight_keys = [key for key in weights if abs(weights[key]) > 1e-4] significant_weights = dict((key,weights[key]) for key in significant_weight_keys) significant_weights = {k:v for k,v in weights.iteritems() if abs(v) > 1e-4} ## more elegant len(significant_weights) H_nonlin_sp = 0 ## with sympy only for combination,pm_arr in significant_weights: H_nonlin_sp += make_nonlin_term_sp(combination,pm_arr)*significant_weights[combination,pm_arr] H_sp = H_lin_sp + H_nonlin_sp*NONLIN_WEIGHT def make_sp_conj(A): ''' Returns the symbolic conjugate of A. Args: A (symbolic expression in symbols a[i] and a_H[i]) Returns: The complex conjugate of A ''' A_H = sp.conjugate(H_sp) for i in range(len(a)): A_H = A_H.subs(sp.conjugate(a[i]),a_H[i]) A_H = A_H.subs(sp.conjugate(a_H[i]),a[i]) return A_H def make_eq_motion(H_sp): ''' Input is a tuple or list, output is a matrix vector ''' A_H = make_sp_conj(H_sp) diff_ls = [1j*sp.diff(H_sp,var) for var in a_H] + [-1j*sp.diff(A_H,var) for var in a] fs = [sp.lambdify( tuple(a+a_H),expression) for expression in diff_ls ] return lambda arr: (np.asmatrix([ f(* arr ) for f in fs])).T A_H = sp.conjugate(H_sp) for i in range(len(a)): A_H = A_H.subs(sp.conjugate(a[i]),a_H[i]) A_H = A_H.subs(sp.conjugate(a_H[i]),a[i]) eq_mot = make_eq_motion(H_sp) def double_up(M1,M2=None): if M2 == None: M2 = np.zeros_like(M1) top = np.hstack([M1,M2]) bottom = np.hstack([np.conj(M2),np.conj(M1)]) return np.vstack([top,bottom]) A_d,C_d,D_d = map(double_up,(A,C,D)) B_d = -double_up(C.H) def make_f(eq_mot,B,a_in): ''' Nonlinear equations of motion ''' return lambda t,a: np.asarray(eq_mot(a)+B*a_in(t)).T[0] def make_f_lin(A,B,a_in): ''' Linear equations of motion ''' return lambda t,a: np.asarray(A*np.asmatrix(a).T+B*a_in(t)).T[0] a_in = lambda t: np.asmatrix([1.]*4).T f = make_f(eq_mot,B_d,a_in) f_lin = make_f_lin(A_d,B_d,a_in) eq_res = eq_mot([1.]*10) print eq_res mat_res = A_d*np.asmatrix([1.]*10).T print mat_res ## compute L2 error between np.sqrt(sum(np.asarray(abs(eq_res - mat_res))**2)) r = ode(f).set_integrator('zvode', method='bdf') r_lin = ode(f_lin).set_integrator('zvode', method='bdf') y0 = np.asmatrix([0.]*10).T t0=0. r.set_initial_value(y0, t0) r_lin.set_initial_value(y0, t0) t1 = 100 dt = 0.01 Y = [] while r.successful() and r.t < t1: r.integrate(r.t+dt) u = a_in(r.t) Y.append(C_d*r.y+D_d*u) Y_lin = [] while r_lin.successful() and r_lin.t < t1: r_lin.integrate(r_lin.t+dt) u = a_in(r_lin.t) Y_lin.append(C_d*r_lin.y+D_d*u) for i in range(4): plt.plot([(y).real[i][0,0] for y in Y ]) for i in range(4): plt.plot([(y).real[i][0,0] for y in Y_lin ])
Testing_make_nonlinear_interaction.ipynb
tabakg/potapov_interpolation
gpl-3.0
6ca8e6e37f572e52c32b200f876c7088
When Making the nonlinear terms above zero, we find agreement with the linear equtions of motion. Using the symbolic packages is kind of slow. For classical simulations maybe we can avoid that. We just need to extract the equations of motion, which should end up being sparse in the interaction terms. TODO: implement without sympy, e.g. with Julia Testing different cases with make_nonlinear_interaction making sure different exceptions get caught
roots_to_use = np.array([roots[i] for i in combination]) modes_to_use = [modes[i] for i in combination] def call_make_non_lin(): return functions.make_nonlinear_interaction(roots_to_use, modes_to_use, delays, delay_indices, start_nonlin,duration_nonlin,pm_arr, indices_of_refraction, eps=1e-12,func=lambda z : z.imag) call_make_non_lin() indices_of_refraction = 1000. call_make_non_lin() start_nonlin = -1 ## this shouldn't happen call_make_non_lin() start_nonlin = [1]*len(roots_to_use) call_make_non_lin() start_nonlin = 0.00001 duration_nonlin = .099 call_make_non_lin() start_nonlin = [0.00001]*len(roots_to_use) duration_nonlin = .099 call_make_non_lin()
Testing_make_nonlinear_interaction.ipynb
tabakg/potapov_interpolation
gpl-3.0
e0c88fcc83d522cde0452d332e40ba56
Unused methods below
## consolidated weights do not take into account which modes are createad or annihilated. consolidated_weightes = {} for key in significant_weights: if not key[0] in consolidated_weightes: consolidated_weightes[key[0]] = significant_weights[key] else: consolidated_weightes[key[0]] += significant_weights[key] ## QNET annihilation and creation operators a_ = [Destroy(local_space('fock', namespace = str(i))) for i in range(m)] ## Make linear Hamiltonian with QNET H_lin = sum([a_[i].dag()*a_[i]*Omega[i,i] for i in range(m)]) ## with QNET def make_nonlin_term(combination,pm_arr): ''' Make symbolic term With QNET ''' r = 1 for index,sign in zip(combination,pm_arr): if sign == 1: r*= a_[index].dag() else: r *= a_[index] return r ## Make nonlinear Hamiltonian in QNET H_nonlin = 0 ## with QNET for combination,pm_arr in significant_weights: H_nonlin += make_nonlin_term(combination,pm_arr)*significant_weights[combination,pm_arr] H_qnet = H_lin+H_nonlin
Testing_make_nonlinear_interaction.ipynb
tabakg/potapov_interpolation
gpl-3.0
efb34d15ce9ec8c6ebd74e5e4d22b9b2
The follow code is same as before, but you can send the commands all in one go. However, there are implicit wait for the driver so it can do AJAX request and render the page for elements also, you can you find_element_by_xpath method
# browser = webdriver.Firefox() #I only tested in firefox # browser.get('http://costcotravel.com/Rental-Cars') # browser.implicitly_wait(5)#wait for webpage download # browser.find_element_by_id('pickupLocationTextWidget').send_keys("PHX"); # browser.implicitly_wait(5) #wait for the airport suggestion box to show # browser.find_element_by_xpath('//li[@class="sayt-result"]').click() # #click the airport suggestion box # browser.find_element_by_xpath('//input[@id="pickupDateWidget"]').send_keys('08/27/2016') # browser.find_element_by_xpath('//input[@id="dropoffDateWidget"]').send_keys('08/30/2016',Keys.RETURN) # browser.find_element_by_xpath('//select[@id="pickupTimeWidget"]/option[@value="09:00 AM"]').click() # browser.find_element_by_xpath('//select[@id="dropoffTimeWidget"]/option[@value="05:00 PM"]').click() # browser.implicitly_wait(5) #wait for the clicks to be completed # browser.find_element_by_link_text('SEARCH').click() # #click the search box # time.sleep(8) #wait for firefox to download and render the page # n = browser.page_source #grab the html source code type(n) #the site use unicode soup = BeautifulSoup(n,'lxml') #use BeautifulSoup to parse the source print "--------------first 1000 characters:--------------\n" print soup.prettify()[:1000] print "\n--------------last 1000 characters:--------------" print soup.prettify()[-1000:] table = soup.find('div',{'class':'rentalCarTableDetails'}) #find the table print "--------------first 1000 characters:--------------\n" print table.prettify()[:1000] print "\n--------------last 1000 characters:--------------" print table.prettify()[-1000:] tr = table.select('tr') #let's look at one of the row type(tr) #lets look at first three row for i in tr[0:3]: print i.prettify() print "-----------------------------------"
costco-rental.ipynb
scko823/web-scraping-selenium-example
mit
9cdc47ff8d70154b38c5252e8efb51ec
let play with one of the row
row = tr[3] row.find('th',{'class':'tar'}).text.encode('utf-8') row row.contents[4].text #1. this is unicode, 2. the dollar sign is in the way 'Car' in 'Econ Car' #use this string logic to filter out unwanted data rows = [i for i in tr if (('Price' not in i.contents[0].text and 'Fees' not in i.contents[0].text and 'Location' not in i.contents[0].text and i.contents[0].text !='') and len(i.contents[0].text)<30)] # use this crazy list comprehension to get the data we want #1. don't want the text 'Price' in the first column #2. don't want the text 'Fee' in the first column #3. don't want the text 'Location' in the first column #4. the text length of first column must be less than 30 characters long rows[0].contents[0].text #just exploring here... rows[0].contents[4].text #need to get rid of the $.... rows[3].contents[0].text #need to make it utf-8 #process the data prices = {} for i in rows: #print the 1st column text print i.contents[0].text.encode('utf-8') prices[i.contents[0].text.encode('utf-8')] = [i.contents[1].text.encode('utf-8'),i.contents[2].text.encode('utf-8'), i.contents[3].text.encode('utf-8'),i.contents[4].text.encode('utf-8')] prices iteritems = prices.iteritems() #call .iteritems() on a dictionary will give you a generator which you can iter over iteritems.next() #run me five times for name, priceList in prices.iteritems(): newPriceList = [] for i in priceList: newPriceList.append(i.replace('$','')) prices[name] = newPriceList prices data = pd.DataFrame.from_dict(prices, orient='index') #get a pandas DataFrame from the prices dictionary data data = data.replace('Not Available', numpy.nan) #replace the 'Not Available' data point to numpy.nan data = pd.to_numeric(data, errors='coerce') #cast to numeric data data data.columns= ['Alamo','Avis','Budget','Enterprise'] #set column names data data.notnull() #check for missing data data.min(axis=1, skipna=True) #look at the cheapest car in each class
costco-rental.ipynb
scko823/web-scraping-selenium-example
mit
34a1279ec4b4e8eedaf7490b4dd32c28
Note when running the above cells that we are actively changing the contents of our data variables. If you try to run these cells multiple times in the same session, an error will occur. Investigating the Data
##################################### # 2 # ##################################### ## Find the total number of rows and the number of unique students (account keys) ## in each table. # Part 1 print( len(enrollments), len(daily_engagement), len(project_submissions) ) # Part 2 def get_unique_students(file_name): """ Retrieves a list of unique account keys from the specified file """ unqiue_students = set() for e in file_name: unqiue_students.add(e["account_key"]) return unqiue_students u_enrollments = get_unique_students(enrollments) u_daily_engagement = get_unique_students(daily_engagement) u_project_submissions = get_unique_students(project_submissions) print( len(u_enrollments), len(u_daily_engagement), len(u_project_submissions) )
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
06f1934f4213c1afd401869a6f6ab92d
Problems in the Data
##################################### # 3 # ##################################### ## Rename the "acct" column in the daily_engagement table to "account_key". for engagement_record in daily_engagement: engagement_record['account_key'] = engagement_record['acct'] del[engagement_record['acct']]
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
db011cb7ceb817e4cebb1aa1e35819f9
Missing Engagement Records
##################################### # 4 # ##################################### ## Find any one student enrollments where the student is missing from the daily engagement table. ## Output that enrollment. for e in enrollments: if e["account_key"] not in u_daily_engagement: print("\n", e)
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
fb9c4b9082540e137a44990de1a0afee
Checking for More Problem Records
##################################### # 5 # ##################################### ## Find the number of surprising data points (enrollments missing from ## the engagement table) that remain, if any. for ix, e in enumerate(enrollments): if e["account_key"] not in u_daily_engagement and e["join_date"] != e["cancel_date"]: print("\n", "Index: %i" % ix, "\n Correspoinding record: \n %s" % e)
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
8cb8fc763bbe60c592b3509f87bc195a
Tracking Down the Remaining Problems
# Create a set of the account keys for all Udacity test accounts udacity_test_accounts = set() for enrollment in enrollments: if enrollment['is_udacity']: udacity_test_accounts.add(enrollment['account_key']) len(udacity_test_accounts) # Given some data with an account_key field, removes any records corresponding to Udacity test accounts def remove_udacity_accounts(data): non_udacity_data = [] for data_point in data: if data_point['account_key'] not in udacity_test_accounts: non_udacity_data.append(data_point) return non_udacity_data # Remove Udacity test accounts from all three tables non_udacity_enrollments = remove_udacity_accounts(enrollments) non_udacity_engagement = remove_udacity_accounts(daily_engagement) non_udacity_submissions = remove_udacity_accounts(project_submissions) print( len(non_udacity_enrollments), len(non_udacity_engagement), len(non_udacity_submissions))
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
76221596025fcaae43afc04c18503a82
Refining the Question
##################################### # 6 # ##################################### ## Create a dictionary named paid_students containing all students who either ## haven't canceled yet or who remained enrolled for more than 7 days. The keys ## should be account keys, and the values should be the date the student enrolled. paid_students = dict() for e in non_udacity_enrollments: # check wether days_to_cancel == None or days_to_cancel > 7 if e["days_to_cancel"] == None or e["days_to_cancel"] > 7: # store account key and join date in temporary variables temp_key = e["account_key"] temp_date = e["join_date"] # check wether account key already exists in temp variable or if join date > existing join date if temp_key not in paid_students or temp_date > paid_students[temp_key]: # add account_key and enrollment_date to paid_students[temp_key] = temp_date len(paid_students)
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
1815b5e3b1e13aac55c384355d4057cf
Getting Data from First Week
# Takes a student's join date and the date of a specific engagement record, # and returns True if that engagement record happened within one week # of the student joining. def within_one_week(join_date, engagement_date): time_delta = engagement_date - join_date return time_delta.days >= 0 and time_delta.days < 7 def remove_free_trial_cancels(data): new_data = [] for data_point in data: if data_point['account_key'] in paid_students: new_data.append(data_point) return new_data paid_enrollments = remove_free_trial_cancels(non_udacity_enrollments) paid_engagement = remove_free_trial_cancels(non_udacity_engagement) paid_submissions = remove_free_trial_cancels(non_udacity_submissions) ##################################### # 7 # ##################################### ## Create a list of rows from the engagement table including only rows where ## the student is one of the paid students you just found, and the date is within ## one week of the student's join date. paid_engagement_in_first_week = [] # loop over engagements for e in non_udacity_engagement: # check if student is in paid students and if engagement date is valid if e["account_key"] in paid_students and within_one_week(paid_students[e["account_key"]], e["utc_date"]) == True: paid_engagement_in_first_week.append(e) len(paid_engagement_in_first_week)
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
cfedd29bfb929e9dc1ff4faa0ce5b5a3
Exploring Student Engagement
from collections import defaultdict # Create a dictionary of engagement grouped by student. # The keys are account keys, and the values are lists of engagement records. engagement_by_account = defaultdict(list) for engagement_record in paid_engagement_in_first_week: account_key = engagement_record['account_key'] engagement_by_account[account_key].append(engagement_record) # Create a dictionary with the total minutes each student spent in the classroom during the first week. # The keys are account keys, and the values are numbers (total minutes) total_minutes_by_account = {} for account_key, engagement_for_student in engagement_by_account.items(): total_minutes = 0 for engagement_record in engagement_for_student: total_minutes += engagement_record['total_minutes_visited'] total_minutes_by_account[account_key] = total_minutes import numpy as np # Summarize the data about minutes spent in the classroom total_minutes = list(total_minutes_by_account.values()) print('Mean:', np.mean(total_minutes)) print('Standard deviation:', np.std(total_minutes)) print('Minimum:', np.min(total_minutes)) print('Maximum:', np.max(total_minutes))
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
ae955d278a9fda1811150f3ab65da063
Debugging Data Analysis Code
##################################### # 8 # ##################################### ## Go through a similar process as before to see if there is a problem. ## Locate at least one surprising piece of data, output it, and take a look at it. for k,v in total_minutes_by_account.items(): if v > 7200: print("\n", "account key: ", k, "value: ", v) print( paid_engagement_in_first_week["account_key" == 460], paid_engagement_in_first_week["account_key" == 140], paid_engagement_in_first_week["account_key" == 108], paid_engagement_in_first_week["account_key" == 78] )
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
3299d0b478b92a87c902610a37f2b2d3
Lessons Completed in First Week
##################################### # 9 # ##################################### ## Adapt the code above to find the mean, standard deviation, minimum, and maximum for ## the number of lessons completed by each student during the first week. Try creating ## one or more functions to re-use the code above. def group_data(data, key_name): """ Given data in dict form and a key, the function returns a grouped data set """ grouped_data = defaultdict(list) for e in data: key = e[key_name] grouped_data[key].append(e) return grouped_data engagement_by_account = group_data(paid_engagement_in_first_week, "account_key") def sum_grouped_data(data, field_name): """ Given data in dict form and a field name, the function returns sum of the field name per key """ summed_data = {} for key, values in data.items(): total = 0 for value in values: total += value[field_name] summed_data[key] = total return summed_data total_lessons_per_account = sum_grouped_data(engagement_by_account, "lessons_completed") def describe_data(data): """ Given a dataset the function returns mean, std. deviation, min and max """ print( "Mean: %f" % np.mean(data), "Standard deviation: %f" % np.std(data), "Min: %f" % np.min(data), "Max: %f" % np.max(data)) plt.hist(data) describe_data(list(total_lessons_per_account.values()))
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
9b59a140b106e18119ba00763e192d58
Number of Visits in First Week
###################################### # 10 # ###################################### ## Find the mean, standard deviation, minimum, and maximum for the number of ## days each student visits the classroom during the first week. for el in paid_engagement_in_first_week: if el["num_courses_visited"] > 0: el["has_visited"] = 1 else: el["has_visited"] = 0 engagement_by_account = group_data(paid_engagement_in_first_week, "account_key") total_visits_per_day_per_account = sum_grouped_data(engagement_by_account, "has_visited") describe_data(list(total_visits_per_day_per_account.values()))
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
9e05dc4f98d060f30c8c314f30fb3aa3
Splitting out Passing Students
###################################### # 11 # ###################################### ## Create two lists of engagement data for paid students in the first week. ## The first list should contain data for students who eventually pass the ## subway project, and the second list should contain data for students ## who do not. subway_project_lesson_keys = ['746169184', '3176718735'] passing_engagement = [] non_passing_engagement = [] # loop over project submission data for el in paid_submissions: # check if project submission account key is in engagement data if el["account_key"] in paid_engagement: print(e["account_key"]) # check if lesson key is in subway_project_lesson key if el["lesson_key"] in subway_project_lesson_keys: print(e["lesson_key"]) # check if assigned_rating is PASSED or DISTINCTION if el["assigned_rating"] in ["PASSED", "DISTINCTION"]: print(e["assigned_rating"]) # if so, add record to passing_engagement list passing_engagement.append(el) # else add record to non_passing_engagement list else: non_passing_engagement.append(el) print("Passing: ", len(passing_engagement), "Not passing: ", len(non_passing_engagement)) subway_project_lesson_keys = ['746169184', '3176718735'] pass_subway_project = set() for el in paid_submissions: if ((el["lesson_key"] in subway_project_lesson_keys) and (el["assigned_rating"] == 'PASSED' or el["assigned_rating"] == 'DISTINCTION')): pass_subway_project.add(el['account_key']) len(pass_subway_project) passing_engagement = [] non_passing_engagement = [] for el in paid_engagement_in_first_week: if el['account_key'] in pass_subway_project: passing_engagement.append(el) else: non_passing_engagement.append(el) print(len(passing_engagement)) print(len(non_passing_engagement))
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
c72849f65cef03e62429bbb6c04480fd
Comparing the Two Student Groups
###################################### # 12 # ###################################### ## Compute some metrics you're interested in and see how they differ for ## students who pass the subway project vs. students who don't. A good ## starting point would be the metrics we looked at earlier (minutes spent ## in the classroom, lessons completed, and days visited). # prepare passing data passing_engagement_grouped = group_data(passing_engagement, "account_key") non_passing_engagement_grouped = group_data(non_passing_engagement, "account_key") passing_minutes = sum_grouped_data(passing_engagement_grouped, "total_minutes_visited") passing_lessons = sum_grouped_data(passing_engagement_grouped, "lessons_completed") passing_days = sum_grouped_data(passing_engagement_grouped, "has_visited") passing_projects = sum_grouped_data(passing_engagement_grouped, "projects_completed") # prepare non passing data non_passing_minutes = sum_grouped_data(non_passing_engagement_grouped, "total_minutes_visited") non_passing_lessons = sum_grouped_data(non_passing_engagement_grouped, "lessons_completed") non_passing_days = sum_grouped_data(non_passing_engagement_grouped, "has_visited") non_passing_projects = sum_grouped_data(non_passing_engagement_grouped, "projects_completed") # compare print("Minutes", "\n") describe_data(list(passing_minutes.values())) describe_data(list(non_passing_minutes.values())) print("\n", "Lessons", "\n") describe_data(list(passing_lessons.values())) describe_data(list(non_passing_lessons.values())) print("\n", "Days", "\n") describe_data(list(passing_days.values())) describe_data(list(non_passing_days.values())) print("\n", "Projects", "\n") describe_data(list(passing_projects.values())) describe_data(list(non_passing_projects.values())) passing_engagement[0:2]
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
7e8991805d1dd8814f0e69f3826c4b48
Making Histograms
###################################### # 13 # ###################################### ## Make histograms of the three metrics we looked at earlier for both ## students who passed the subway project and students who didn't. You ## might also want to make histograms of any other metrics you examined. # setup %matplotlib inline import matplotlib.pyplot as plt # minutes passing plt.title("Passing students by minute") plt.hist(list(passing_minutes.values())) # minutes non-passing plt.title("_NON_ Passing students by minute") plt.hist(list(non_passing_minutes.values())) # lessons plt.title("Passing students by lessons") plt.hist(list(passing_lessons.values())) # lessons non-passing plt.title("_NON_ Passing students by lessons") plt.hist(list(non_passing_lessons.values())) # days plt.title("Passing students by days") plt.hist(list(passing_days.values())) # days non-passing plt.title("_NON_ Passing students by days") plt.hist(list(non_passing_days.values()))
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
c52e91d71b2dcb269c2691a1999bdf87
Improving Plots and Sharing Findings
###################################### # 14 # ###################################### ## Make a more polished version of at least one of your visualizations ## from earlier. Try importing the seaborn library to make the visualization ## look better, adding axis labels and a title, and changing one or more ## arguments to the hist() function. import seaborn as sns # seaborn only plt.title("_NON_ Passing students by days with S-E-A-B-O-R-N") plt.xlabel("days spent in the classroom") plt.ylabel("frequency") plt.hist(list(non_passing_days.values()), bins=8)
p2/L1_Starter_Code.ipynb
stefanbuenten/nanodegree
mit
15be3fb1a28224cbe794134764669eb8
Problem 1 The convolutional model above uses convolutions with stride 2 to reduce the dimensionality. Replace the strides by a max pooling operation (nn.max_pool()) of stride 2 and kernel size 2. With adding the max_pool of stride 2 and kernel size 2 and increasing num_of_steps, the performance has improved from 89.8 to 93.3%
batch_size = 16 patch_size = 5 depth = 16 num_hidden = 64 graph = tf.Graph() with graph.as_default(): # Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. layer1_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1)) layer1_biases = tf.Variable(tf.zeros([depth])) layer2_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, depth, depth], stddev=0.1)) layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth])) layer3_weights = tf.Variable(tf.truncated_normal( [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1)) layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) layer4_weights = tf.Variable(tf.truncated_normal( [num_hidden, num_labels], stddev=0.1)) layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels])) # Model. def model(data): conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME') hidden = tf.nn.relu(conv + layer1_biases) # Adding the max pool max_pool = tf.nn.max_pool(hidden, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME') hidden = tf.nn.relu(conv + layer2_biases) max_pool = tf.nn.max_pool(hidden, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') shape = hidden.get_shape().as_list() reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]]) hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) return tf.matmul(hidden, layer4_weights) + layer4_biases # Training computation. logits = model(tf_train_dataset) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) test_prediction = tf.nn.softmax(model(tf_test_dataset)) num_steps = 5001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print('Initialized') for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 250 == 0): print('Minibatch loss at step %d: %f' % (step, l)) print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)) print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
machine-learning/deep-learning/udacity/ud730/4_convolutions.ipynb
pk-ai/training
mit
c061626ff5171f630f36dc0b5458bb53
Variables can be defined freely and change type. There is a very handy print function (this is very different from Python2!). The format function can be used to customize the output. More at https://pyformat.info/
a = 42 b = 256 z = 2 + 3j w = 5 - 6j print("I multiply", a, "and", b, "and I get", a * b) print("Compex numbers!", z + w) print("Real:", z.real) # Variables as objects (in Python everything is an object) print("Abs:", abs(z)) almost_pi = 3.14 better_pi = 3.14159265358979323846264338327950288419716939937510 c = 299792458 print("Look at his scientific notation {:.2E} or ar this nice rounding {:.3f}".format(c, better_pi))
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
78db03b9931c9ceb20471650a98138f0
Note that Python does not require semicolons to terminate an instruction (but they don't harm) but require the indendation to be respected. (After for, if, while, def, class, ...)
for i in range(5): if (not i%2 == 0 or i == 0): print(i)
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
c896bfa99eae3e3f580cb20c887178c4
Strucutred Data It's easy to work with variables of different nature. There are three kinds of structured variable: tuple (), lists [], and dicts {}. Tuples are immutable (ofter output of functions is given as a tuple). Lists are the usual arrays (multidimensional). Dictionaries are associative arrays with keywords.
a = 5 a = "Hello, World" # Multiple assignation b, c = "Hello", "World" print(a) print(b, c) tuple_example = (1,2,3) print("Tuple", tuple_example[0]) # tuple_example[1] = 3 list_example = [1,2,3] print("List 1", list_example[0]) list_example[1] = 4 print("List 2", list_example[1]) dict_example = {'one' : 1, 'two' : 2, 'three' : 3 } print("Dict", dict_example['one'])
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
468fefc2f8f7f244095748173c870d85
Lists are very useful as most of the methods are build it, like for sorting, reversing, inserting, deleting, slicing, ...
random_numbers = [1,64,78,13,54,34, "Ravioli"] print("Length:", len(random_numbers)) true_random = random_numbers[0:5] print("Sliced:", true_random) print("Sorted:", sorted(true_random)) print("Max:", max(true_random)) random_numbers.remove("Ravioli") print("Removed:", random_numbers) multi_list = ["A string", ["a", "list"], ("A", "Tuple"), 5] print("Concatenated list", random_numbers + multi_list)
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
2d291a2d1e3ec774ad090ffa3d7b5c97
CAVEAT: List can be dangerous and have unexpected behavior due to the default copy method (like pointers pointing to the same area of memory)
cool_numbers = [0, 11, 42] other_numbers = cool_numbers print(other_numbers) cool_numbers.append(300) print(other_numbers)
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
74a61684ed2dc33b144a23b0072d6025
To avoid this problem usually slicing is used.
cool_numbers = [0, 11, 42] other_numbers = cool_numbers[:] print(other_numbers) cool_numbers.append(300) print(other_numbers)
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
24f62501fa930544eaa7f8d6c189a5ba
String are considered list and slicing can be applied on strings, with a sleek behavior with respect to indeces:
s = "GNU Emacs" # No problem with "wrong" index print(s[4:100]) # Backwards! print(s[-9:-6])
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
9500f83e828363af7f9cc0acbd00584e
With a for loop it is possible to iterate over lists. (But attention not to modify the list over which for is iterating!)
for num in cool_numbers: print("I like the number", num)
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
193bbe63e62f31ea5229b62987283c3e
List can generate other list via list comprehension which is a functional way to operate on a list or a subset defined by if statements.
numbers = [0, 1, 2, 3, 4, 5, 6, 7] # Numbers via list comprehension numbers = [i for i in range(0,8)] print("Numbers:", numbers) even = [x for x in numbers if x%2 == 0] odd = [x for x in numbers if not x in even] print("Even:", even) print("Odd:", odd)
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
69a9242c0a5a3cb892a0ddf297395f90
Functions Python can have user-defined functions. There are some details about passing by reference or passing by value (what Python actually does is passing by assignment, details here: https://docs.python.org/3/faq/programming.html#how-do-i-write-a-function-with-output-parameters-call-by-reference). There are no return and arguments type but there is no overloading.
def say_hello(to = "Gabriele"): print("Hello", to) say_hello() say_hello("Albert") def sum_and_difference(a, b): return (a + b, a - b) (sum, diff) = sum_and_difference(10, 15) print("Sum: {}, Diff: {}".format(sum, diff)) def usless_box(a,b,c,d,e,f): return a,b,c,d,e,f first, _, _, _, _, _ = usless_box(100, 0, 1, 2, 3, 4) print(first)
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
23700d3015ac95a0da97088b608b0475
A very useful construct is try-except that can be used to handle errors.
hey = "String" ohi = 6 try: print(hey/3) except: print("Error in hey!") try: print(ohi/3) except: print("Error in ohi!")
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
8886b4ef7a9161d7c92e22305c5c893c
NOTE: Prefer this name convenction (no CamelCase) and space over tabs There is full support to OOP with Ineheritance, Encapsulation and Polymorphism. (https://docs.python.org/3/tutorial/classes.html) Shipped with battery included For Python there exist a huge number of modules that extend the potentiality of Python. Here are some examples: OS os is a module for interacting with the system and with files
# Modules have to be imported # In this way I import thw whole module import os # To access an object inside the module I have to prepend the name # In this way I import only a function but I don't have to prepend the # module's name from os import getcwd print(os.getcwd()) print(getcwd())
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
67a3898f78c0cfd00a2d350b420bb22a
os with Python's capability for manipulating string is a very simple way to interact with files and dir
dir = "test" files = os.listdir(dir) print(files) # Sorting files.sort() print(files) # I take the subset starting with d and not ending with 10 and that are not directories dfiles = [f for f in files if f.startswith("d") and not f.endswith("10") and not os.path.isdir(f)] print(dfiles) for f in dfiles: data = f.split("_") n1 = data[1] n2 = data[2] print("From the name of the file {} I have extrected {} {}".format(f, n1, n2))
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
29ed325ff2910883644b97f6be1e0c0a
Sys (and argparse) sys is another module for interactive with the system or to obtain information about it, in particular by means of the command line. argparse is a module for defining flags and arguments.
import sys # sys provides the simplest way to pass command line arguments to a python script print(sys.argv[0]) # argparse is more flexible but requires also more setup
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
20e9ffbc3aa46752a459229bb39f2540
NumPy Numpy is a module that provides a framework for numerical application. It defines new type of data highly optimized (NumPy is written in C) and provides simple interfaces for importing data from files and manipulate them. It is well integrated with the other scientific libraries for Python as it serves as base in many cases (SciPy, Matplotlib, Pandas, ...) Its fundamental object is the numpy array. With good (enough) documentation!
# Standard import import numpy as np # Array from list num = [0,1,2] print("List:", num) x = np.array(num) print("Array:", x) y = np.random.randint(3, size = (3)) print("Random", y) z = np.array([x,y]) print("z:", z) print("Shape", z.shape) zres = z.reshape(3,2) print("z reshaped:", zres) # Attention: numpy does not alter any object! # Operation behave well on arrays y3 = y + 3 print("y + 3:", y3) print("y squared:", y**2) # Many built-in operations print("Scalar product:", np.dot(x,y)) # Handy way to create an equispaced array xx = np.linspace(0, 15, 16) print("xx:", xx) yy = np.array([x**2 for x in xx]) print("yy:", yy) zz = yy.reshape(4,4) print("zz", zz) print("Eigenvalues:", np.linalg.eigvals(zz))
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
1a2d3dc36b393b80df37a22f2d7aee72
NumPy offers tools for: - Linear algebra - Logic functions - Datatypes - Constant of nature - Matematical functions (also special, as Hermite, Legendre...) - Polynomials - Statistics - Sorting, searching and counting - Fourier Transform - Random generation - Integration with C/C++ and Fortran code
# Example: Polynomail x^2 + 2 x + 1 p = np.poly1d([1, 2, 1]) print(p) # Evaluate it at 1 print("p(1):", p(1)) # Find the roots print("Roots:", p.r) # Take derivative print("Deriv:", np.polyder(p))
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
7306f45809ceb2e24d0397a2a0d877a3
Interaction with files is really simple
arr = np.random.random(10) # Prints a single column file, for arrays print many columns np.savetxt("array.dat", arr) files = os.listdir(".") print([f for f in files if f == "array.dat"]) data = np.loadtxt("array.dat") print(data)
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
a3db3613fa9c9cffded3f5bd5c5a6c89
It is possible to save data compressed in a gzip by appending tar.gz to the name of the file (in this case array.dat.tar.gz). REMEMBER: - To create: tar cvzf archive.tar.gz folder - To extract: tar xvzf archive.tar.gz Matplotlib Matplotlib is the tool for plotting and graphics
import matplotlib.pyplot as plt plt.plot(arr) plt.ylabel('Some numbers') plt.xlabel('An index') plt.title("The title!") plt.show()
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
afe366ccf6ce511c71107c8df2a59b2f
Matplotlib has a seamless integration with NumPy
x = np.linspace(0,2 * np.pi, 100) y = np.sin(x) z = np.cos(x) plt.plot(x, y, "r-", x, z, "g-") plt.show()
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
77a77a5a9808ae5309242ce11467ed45
Matplotlib has a great library of examples (https://matplotlib.org/examples/) that in particular contains many of the most common plots (histograms, contour, scatter, pie, ...)
# Plot of the Lorenz Attractor based on Edward Lorenz's 1963 "Deterministic # Nonperiodic Flow" publication. # http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2 # # Note: Because this is a simple non-linear ODE, it would be more easily # done using SciPy's ode solver, but this approach depends only # upon NumPy. import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def lorenz(x, y, z, s=10, r=28, b=2.667): x_dot = s*(y - x) y_dot = r*x - y - x*z z_dot = x*y - b*z return x_dot, y_dot, z_dot dt = 0.01 stepCnt = 10000 # Need one more for the initial values xs = np.empty((stepCnt + 1,)) ys = np.empty((stepCnt + 1,)) zs = np.empty((stepCnt + 1,)) # Setting initial values xs[0], ys[0], zs[0] = (0., 1., 1.05) # Stepping through "time". for i in range(stepCnt): # Derivatives of the X, Y, Z state x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i]) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(xs, ys, zs, lw=0.5) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_zlabel("Z Axis") ax.set_title("Lorenz Attractor") plt.show()
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
da406a94d3493a4a32028769daa0a71b
SciPy SciPy is a module that relies on NumPy and provides many ready-made tools used in science. Examples: - Optimization - Integration - Interpolation - Signal processing - Statistics Example, minimize: $f\left(\mathbf{x}\right)=\sum_{i=1}^{N-1}100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i-1}\right)^{2}.$
import numpy as np from scipy.optimize import minimize def rosen(x): """The Rosenbrock function""" return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0) x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2]) res = minimize(rosen, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True}) print(res.x)
seminar_3/Introduction to Python.ipynb
Sbozzolo/Open-Source-Tools-for-Physics
gpl-3.0
678f7ba22bff3563df5fbbf74862112e
True Values The "true" values can be computed analytically in this case, so we did so. We can also compute the distribution for weighting the errors.
def compute_value_dct(theta_lst, features): return [{s: np.dot(theta, x) for s, x in features.items()} for theta in theta_lst] def compute_values(theta_lst, X): return [np.dot(X, theta) for theta in theta_lst] def compute_errors(value_lst, error_func): return [error_func(v) for v in value_lst] def rmse_factory(true_values, d=None): true_values = np.ravel(true_values) # sensible default for weighting distribution if d is None: d = np.ones_like(true_values) else: d = np.ravel(d) assert(len(d) == len(true_values)) # the actual root-mean square error def func(v): diff = true_values - v return np.sqrt(np.mean(d*diff**2)) return func
rlbench/off_policy_comparison-short.ipynb
rldotai/rlbench
gpl-3.0
32310a2d640d4b6c612b422431c363c2
Comparing the Errors For each algorithm, we get the associated experiment, and calculate the errors at each timestep, averaged over the runs performed with that algorithm.
# define the experiment num_states = 8 num_features = 6 num_active = 3 num_runs = 10 max_steps = 10000 # set up environment env = chicken.Chicken(num_states) # Define the target policy pol_pi = policy.FixedPolicy({s: {0: 1} for s in env.states}) # Define the behavior policy pol_mu = policy.FixedPolicy({s: {0: 1} if s < 4 else {0: 0.5, 1: 0.5} for s in env.states}) # state-dependent gamma gm_dct = {s: 0.9 for s in env.states} gm_dct[0] = 0 gm_func = parametric.MapState(gm_dct) gm_p_func = parametric.MapNextState(gm_dct) # set up algorithm parameters update_params = { 'alpha': 0.02, 'beta': 0.002, 'gm': gm_func, 'gm_p': gm_p_func, 'lm': 0.0, 'lm_p': 0.0, 'interest': 1.0, } # Run all available algorithms data = dict() for name, alg in algos.algo_registry.items(): print(name) run_lst = [] for i in range(num_runs): print("Run: %d"%i, end="\r") episode_data = dict() # Want to use random features phi = features.RandomBinary(num_features, num_active) episode_data['features'] = {s: phi(s) for s in env.states} # Set up the agent _update_params = update_params.copy() if name == 'ETD': _update_params['alpha'] = 0.002 agent = OffPolicyAgent(alg(phi.length), pol_pi, pol_mu, phi, _update_params) # Run the experiment episode_data['steps'] = run_contextual(agent, env, max_steps) run_lst.append(episode_data) data[name] = run_lst # True values & associated stationary distribution theta_ls = np.array([ 0.4782969, 0.531441 , 0.59049, 0.6561, 0.729, 0.81, 0.9, 1.]) d_pi = np.ones(num_states)/num_states D_pi = np.diag(d_pi) # define the error/objective function err_func = rmse_factory(theta_ls, d=d_pi) baseline = err_func(np.zeros(num_states)) for name, experiment in data.items(): print(name) errors = [] for episode in experiment: feats = experiment[0]['features'] X = np.array([feats[k] for k in sorted(feats.keys())]) steps = experiment[0]['steps'] thetas = list(pluck('theta', steps)) # compute the values at each step val_lst = compute_values(thetas, X) # compute the errors at each step err_lst = compute_errors(val_lst, err_func) errors.append(err_lst) # calculate the average error clipped_errs = np.clip(errors, 0, 100) avg_err = np.mean(clipped_errs, axis=0) # plot the errors fig, ax = plt.subplots() ax.plot(avg_err) # format the graph ax.set_ylim(1e-2, 2) ax.axhline(baseline, c='red') ax.set_yscale('log') plt.show()
rlbench/off_policy_comparison-short.ipynb
rldotai/rlbench
gpl-3.0
79a765f9e6853d000696ffc8c55adc90
Ejercicio Weigthed Netwroks Cree una red no direccionada con los siguientes pesos. (a, b) = 0.3 (a, c) = 1.0 (a, d) = 0.9 (a, e) = 1.0 (a, f) = 0.4 (c, f) = 0.2 (b, h) = 0.2 (f, j) = 0.8 (f, g) = 0.9 (j, g) = 0.6 (g, k) = 0.4 (g, h) = 0.2 (k, h) = 1.0
# To create a weighted, undirected graph, the edges must be provided in the form: (node1, node2, weight) edges = [('a', 'b', 0.3), ('a', 'c', 1.0), ('a', 'd', 0.9), ('a', 'e', 1.0), ('a', 'f', 0.4), ('c', 'f', 0.2), ('b', 'h', 0.2), ('f', 'j', 0.8), ('f', 'g', 0.9), ('j', 'g', 0.6), ('g', 'k', 0.4), ('g', 'h', 0.2), ('k', 'h', 1.0)] def edges_to_weighted_graph(edges): edges = list(edges) graph = {} for i in range(0,len(edges)): if graph.get(edges[i][0], None): graph[edges[i][0]].add((edges[i][1], edges[i][2])) else: if len(edges[i]) == 3: graph[edges[i][0]] = set([(edges[i][1],edges[i][2])]) else: graph[edges[i][0]] = set([]) if len(edges[i]) == 3: if graph.get(edges[i][1], None): graph[edges[i][1]].add((edges[i][0],edges[i][2])) else: graph[edges[i][1]] = set([(edges[i][0],edges[i][2])]) return graph graph = edges_to_weighted_graph(edges) print (graph) """ With NetworkX """ FG = nx.Graph() FG.add_weighted_edges_from(edges) print (str(FG))
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
1a1b65382d7676494b5571a8a796f712
Imprima la matriz de adyasencia
def adjacency_matrix(graph): keys = list(graph.keys()) keys.sort() adj_matrix = np.zeros((len(keys),len(keys))) for node, edges in graph.items(): for edge in edges: adj_matrix[keys.index(node)][keys.index(edge[0])] = edge[1] return (adj_matrix, keys) print (adjacency_matrix(graph)) """ With NetworkX """ A = nx.adjacency_matrix(FG) print (A)
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
a23401888fc8c47cd3cb1662d1399383
Ejercicio Weak & Strong ties Con la misma red anterior asuma que un link debil es inferior a 0.5, cree un cรณdigo que calcule si se cumple la propiedad "strong triadic closure"
def weighted_element_neighbours(tuple_graph, element): for index, item in enumerate(tuple_graph): if element[0] == item[0]: neighbours = [i[0] for i in item[1]] return neighbours raise IndexNotFoundError('Error: the requested element was not found') def weighted_graph_to_tuples(graph): output_graph = [] for node, neighbours in graph.items(): output_graph.append((node,list(neighbours))) return output_graph def triadic_closure(graph): tuple_graph = weighted_graph_to_tuples(graph) L = np.zeros((len(tuple_graph),), dtype=np.int) for i in range(0, len(tuple_graph)): element_at_i = tuple_graph[i][0] for j in range(0, len(tuple_graph[i][1])-1): current = tuple_graph[i][1][j] weight_current = current[1] if weight_current >= 0.5: for k in range(j+1, len(tuple_graph[i][1])): comparison = tuple_graph[i][1][k] weight_comparison = comparison[1] if weight_comparison >= 0.5: # Search if there is a link if not comparison[0] in weighted_element_neighbours(tuple_graph, current): return False return True print(triadic_closure(graph)) edges2 = [('a','b',0.1),('a','c',0.5),('a','d',0.9),('a','e',0.6),('c','d',0.1),('c','e',0.4),('d','e',0.9)] graph2 = edges_to_weighted_graph(edges2) print(triadic_closure(graph2)) """ With NetworkX """
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
8f60f6c8b9ceb3f37b1fde01c90cf7c6
Cambie un peso de los links anteriores para que se deje de cumplir la propiedad y calcule si es cierto. Explique. Escriba un cรณdigo que detecte puntes locales y que calcule el span de cada puente local
import copy """ The following code is thought for unweighted graphs """ edges3 = [(1,2),(1,3),(1,5),(5,6),(2,6),(2,1),(2,4)] edges4 = [('a','b'),('a','c'),('a','d'),('a','e'),('a','f'), ('b','h'),('c','d'),('c','e'),('c','f'),('d','e'), ('f','j'),('f','g'),('j','g'),('g','k'),('g','h'), ('k','h')] """ This function was taken from Python Software Foundation. Python Patterns - Implementing Graphs. https://www.python.org/doc/essays/graphs/ (Visited in march 2017) """ def find_shortest_path(graph, start, end, path=[]): path = path + [start] if start == end: return path if not start in graph: return None shortest = None for next in graph[start]: if next not in path: newpath = find_shortest_path(graph, next, end, path) if newpath: if not shortest or len(newpath) < len(shortest): shortest = newpath return shortest # Returns a tuple containing two values: # Input: an undirected graph G in form of a dict # (True, span) if there is a local bridge (span > 2) between two nodes # (True, None) if there is a bridge between two nodes # (False, None) otherwise def bridge(graph, start, end): if not end in graph[start]: return (False, None) new_graph = copy.deepcopy(graph) new_graph[start] = graph[start] - {end} new_graph[end] = graph[end] - {start} span_path = find_shortest_path(new_graph, start, end) if not span_path: # Global bridge return (True, None) path_length = len(span_path) - 1 if path_length > 2: return (True, path_length) elif path_length == 2: return (False, path_length) elif path_length == 1: raise MultiGraphNotAllowedError('Error: Multigraphs are not allowed') else: raise ReflexiveRelationsNotAllowedError('Error: Reflexive relations are not allowed') graph3 = edges_to_graph(edges3) # Return the places of the graph where there is a bridge and the # span of each bridge as a vector of tuples in the form (start, end, span) def local_bridges(graph): nodes = list(graph.keys()) result = [] for i in range(0, len(nodes)-1): node1 = nodes[i] for j in range(i+1, len(nodes)): node2 = nodes[j] brd = bridge(graph, nodes[i], nodes[j]) if brd[0] and brd[1] != None: result.append((nodes[i],nodes[j],{'span':brd[1]})) return result brds = local_bridges(graph3) print(brds) graph4 = edges_to_graph(edges4) print(local_bridges(graph4)) def distance_matrix(graph): keys = list(graph.keys()) keys.sort() d_matrix = np.zeros((len(keys),len(keys))) for i in range(0, len(keys)): for j in range(0, len(keys)): start = keys[i] end = keys[j] path = find_shortest_path(graph, start, end) d_matrix[i][j] = len(path)-1 return (d_matrix, keys) """ With NetworkX """
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
8564fdbdca41c16829b729ee32a24609
Ejercicio Random Networks genere 1000 redes aleatorias N = 12, p = 1/6 y grafique la distribuciรณn del nรบmero de enlaces
import random import seaborn as sns %matplotlib inline N = 12 p = float(1)/6 def random_network_links(N, p): edges = [] for i in range(0, N-1): for j in range(i+1, N): rand = random.random() if rand <= p: edges.append((i+1,j+1)) return edges def random_network_links2(N, p): edges = [] adj_matrix = np.zeros((N,N), dtype=int) for i in range(0, N-1): for j in range(i+1, N): rand = random.random() if rand <= p: edges.append((i+1,j+1)) adj_matrix[i][j] = 1 adj_matrix[j][i] = 1 for i in range(0, N): if sum(adj_matrix[i]) == 0: edges.append((i+1,)) return edges # Returns a number of random networks in the form of a list of edges def random_networks(number_of_networks, N, p): networks = [] for i in range(0, number_of_networks): networks.append(random_network_links2(N,p)) return networks def len_edges(edges_graph): result = 0 for edge in edges_graph: if len(edge) == 2: result += 1 return result networks1 = random_networks(1000,N,p) len_edges1 = [len_edges(i) for i in networks1] ax = sns.distplot(len_edges1) """ With NetworkX """ def random_networks_nx(number_of_networks, N, p): networks = [] for i in range(0, number_of_networks): G_ran = nx.gnp_random_graph(N,p) networks.append(G_ran) return networks networks2 = random_networks_nx(1000,N,p) len_edges2 = [len(G.edges()) for G in networks2] sns.distplot(len_edges2)
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
a468a8f83b536682007fc78c33c11997
Grafique la distribuciรณn del promedio de grados en cada una de las redes generadas del ejercicio anterior
% matplotlib inline # Transform the list of lists of edges to a list of dicts, this is done to # calculate the average degree distribution in the next methods networks1_graph = [edges_to_graph(edges) for edges in networks1] def degrees(graph): degrees = {} for node, links in graph.items(): degrees[node] = len(links) return degrees def avg_degree(graph): dgrs = degrees(graph) return float(sum(dgrs.values()))/len(dgrs) avg_degrees1 = [avg_degree(network) for network in networks1_graph] ax = sns.distplot(avg_degrees1) """ With NetworkX """ def avg_degree_nx(graph): graph_degrees = graph.degree() return float(sum(graph_degrees.values()))/len(graph_degrees) avg_degrees2 = [avg_degree_nx(network) for network in networks2] sns.distplot(avg_degrees2)
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
48a7e5a2f09e651c158a53067f9cf269
Haga lo mismo para redes con 100 nodos
% matplotlib inline networks100_1 = random_networks(1000, 100, p) networks100_2 = random_networks_nx(1000,100,p) len_edges100_1 = [len_edges(i) for i in networks100_1] ax = sns.distplot(len_edges100_1) len_edges100_2 = [len(G.edges()) for G in networks100_2] sns.distplot(len_edges100_2) networks100_1_graph = [edges_to_graph(edges) for edges in networks100_1] avg_degrees100_1 = [avg_degree(network) for network in networks100_1_graph] avg_degrees100_2 = [avg_degree_nx(network) for network in networks100_2] ax = sns.distplot(avg_degrees100_1) sns.distplot(avg_degrees100_2)
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
d5d14dc8f95adc7b33fa8d353ef76ae8
Ejercicio Random Networks - Componente Gigante Grafique como crece el tamaรฑo del componente mรกs grande de una red aleatoria con N=100 nodos y diferentes valores de p (grafique con promedio de grado entre 0 y 4 cada 0.05)
""" The following code snippet was taken from Mann, Edd. Depth-First Search and Breadth-First Search in Python. http://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/ """ graph5 = copy.deepcopy(graph4) graph5['m'] = {'n'} graph5['n'] = {'m'} def bfs(graph, start): visited, queue = set(), collections.deque([start]) while queue: vertex = queue.popleft() if vertex not in visited: visited.add(vertex) queue.extend(graph[vertex] - visited) return visited # return a list of lists of nodes of 'graph' each one being the nodes that # define a specific connected component of of 'graph' def connected_components(graph): components = [] nodes = set(graph.keys()) while len(nodes): root = next(iter(nodes)) visited = bfs(graph, root) components.append(visited) nodes = nodes - visited return components # Returns a set containing the nodes of a graph's biggest component def biggest_component_nodes(graph): components = connected_components(graph) lengths = [len(component) for component in components] max_component = 0 max_index = -1 for i in range(0, len(lengths)): if lengths[i] > max_component: max_component = lengths[i] max_index = i return components[max_index] # Returns a subgraph containing the biggest connected component of 'graph' def biggest_component(graph): nodes = biggest_component_nodes(graph) nodes = list(nodes) subgraph = {k:graph[k] for k in nodes if k in graph} return subgraph # Plot results import matplotlib.pyplot as plt import plotly.plotly as py from plotly.graph_objs import Scatter, Figure, Layout from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot init_notebook_mode(connected=True) def plot_giant_component_growth(N): p_vector = [] avg_degree_vector = [] p = 0.0 while p <= 1: p_vector.append(p) network = random_network_links2(N,p) network = edges_to_graph(network) component = biggest_component(network) avg_degree_vector.append(avg_degree(component)) p += 0.05 plt.plot(p_vector, avg_degree_vector, "o") plot_giant_component_growth(100)
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
411fb66f01402cb135aa2114240d4c87
Grafique cuรกl es el porcentaje de nodos del componente mรกs grande para diferentes valores de p
def plot_giant_component_growth_nodes(N): p_vector = [] node_percentages = [] p = 0.0 while p <= 1: p_vector.append(p) network = random_network_links2(N,p) network = edges_to_graph(network) component = biggest_component(network) component_percentage = float(len(component))/len(network) node_percentages.append(component_percentage) p += 0.001 plt.plot(p_vector, node_percentages, "o") plot_giant_component_growth_nodes(100)
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
d9f437ef4f99288d6e9b6cc1d7160dc0
Identifique para que valores de p el componente mas grande esta totalmente interconectado
def identify_p_value_for_total_connection(N): p = 0.0 while p <= 1: network = random_network_links2(N,p) network = edges_to_graph(network) component = biggest_component(network) component_percentage = float(len(component))/len(network) if component_percentage == 1: return p p += 0.001 return 1 # Default value for a totally connected component identify_p_value_for_total_connection(100)
santiagoangee/Ejercicios 1.2 Weak Ties & Random Networks.ipynb
spulido99/NetworksAnalysis
mit
389ef5ed63a3d7aba6dc439d83b43a3d
This problem originated from a blog post I wrote for DataCamp on graph optimization here. The algorithm I sketched out there for solving the Chinese Problem on the Sleeping Giant state park trail network has since been formalized into the postman_problems python library. I've also added the Rural Postman solver that is implemented here. So the three main enhancements in this post from the original DataCamp article and my second iteration published here updating to networkx 2.0 are: 1. OpenStreetMap for graph data and visualization. 2. Implementing the Rural Postman algorithm to consider optional edges. 3. Leveraging the postman_problems library. This code, notebook and data for this post can be found in the postman_problems_examples repo. The motivation and background around this problem is written up more thoroughly in the previous posts and postman_problems. Table of Contents Table of Contents {:toc}
import mplleaflet import networkx as nx import pandas as pd import matplotlib.pyplot as plt from collections import Counter # can be found in https://github.com/brooksandrew/postman_problems_examples from osm2nx import read_osm, haversine from graph import contract_edges, create_rpp_edgelist from postman_problems.tests.utils import create_mock_csv_from_dataframe from postman_problems.solver import rpp, cpp from postman_problems.stats import calculate_postman_solution_stats
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
55516ee259ab01966e0838ee5321b42e
Create Graph from OSM
# load OSM to a directed NX g_d = read_osm('sleepinggiant.osm') # create an undirected graph g = g_d.to_undirected()
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
dbf044faeff624ec1870307f6c708128
Adding edges that don't exist on OSM, but should
g.add_edge('2318082790', '2318082832', id='white_horseshoe_fix_1')
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
0512c1d42d80309f4d1d45637a85f2b5
Adding distance to OSM graph Using the haversine formula to calculate distance between each edge.
for e in g.edges(data=True): e[2]['distance'] = haversine(g.node[e[0]]['lon'], g.node[e[0]]['lat'], g.node[e[1]]['lon'], g.node[e[1]]['lat'])
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
0b497ae12bb93fc01eb5639df94924de
Create graph of required trails only A simple heuristic with a couple tweaks is all we need to create the graph with required edges: Keep any edge with 'Trail' in the name attribute. Manually remove the handful of trails that are not part of the required Giant Master route.
g_t = g.copy() for e in g.edges(data=True): # remove non trails name = e[2]['name'] if 'name' in e[2] else '' if ('Trail' not in name.split()) or (name is None): g_t.remove_edge(e[0], e[1]) # remove non Sleeping Giant trails elif name in [ 'Farmington Canal Linear Trail', 'Farmington Canal Heritage Trail', 'Montowese Trail', '(white blazes)']: g_t.remove_edge(e[0], e[1]) # cleaning up nodes left without edges for n in nx.isolates(g_t.copy()): g_t.remove_node(n)
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
d617cd35682a3a38286cf7ab969cb5fc
Viz Sleeping Giant Trails All trails required for the Giant Master:
fig, ax = plt.subplots(figsize=(1,8)) pos = {k: (g_t.node[k]['lon'], g_t.node[k]['lat']) for k in g_t.nodes()} nx.draw_networkx_edges(g_t, pos, width=2.5, edge_color='black', alpha=0.7) mplleaflet.save_html(fig, 'maps/sleepinggiant_trails_only.html')
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
17d861da69c88a4b4eed09a18d72303d
<iframe src="https://cdn.rawgit.com/brooksandrew/postman_problems_examples/master/sleepinggiant/maps/sleepinggiant_trails_only.html" height="400" width="750"></iframe> Connect Edges In order to run the RPP algorithm from postman_problems, the required edges of the graph must form a single connected component. We're almost there with the Sleeping Giant trail map as-is, so we'll just connect a few components manually. Here's an example of a few floating components (southwest corner of park): <img src="https://github.com/brooksandrew/postman_problems_examples/raw/master/sleepinggiant/fig/sleepinggiant_disconnected_components.png" width="500"> OpenStreetMap makes finding these edge (way) IDs simple. Once grabbing the ? cursor, you can click on any edge to retrieve IDs and attributes. <img src="https://github.com/brooksandrew/postman_problems_examples/raw/master/sleepinggiant/fig/osm_edge_lookup.png" width="1000"> Define OSM edges to add and remove from graph
edge_ids_to_add = [ '223082783', '223077827', '40636272', '223082785', '222868698', '223083721', '222947116', '222711152', '222711155', '222860964', '223083718', '222867540', 'white_horseshoe_fix_1' ] edge_ids_to_remove = [ '17220599' ]
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
8129e414564cf1cd4ef3f4fce16f381f
Add attributes for supplementary edges
for e in g.edges(data=True): way_id = e[2].get('id').split('-')[0] if way_id in edge_ids_to_add: g_t.add_edge(e[0], e[1], **e[2]) g_t.add_node(e[0], lat=g.node[e[0]]['lat'], lon=g.node[e[0]]['lon']) g_t.add_node(e[1], lat=g.node[e[1]]['lat'], lon=g.node[e[1]]['lon']) if way_id in edge_ids_to_remove: if g_t.has_edge(e[0], e[1]): g_t.remove_edge(e[0], e[1]) for n in nx.isolates(g_t.copy()): g_t.remove_node(n)
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
0216d8286275b1f9515159e12ead975f
Ensuring that we're left with one single connected component:
len(list(nx.connected_components(g_t)))
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
7129e297534ce837bd192254d7faa66e
Viz Connected Component The map below visualizes the required edges and nodes of interest (intersections and dead-ends where degree != 2):
fig, ax = plt.subplots(figsize=(1,12)) # edges pos = {k: (g_t.node[k].get('lon'), g_t.node[k].get('lat')) for k in g_t.nodes()} nx.draw_networkx_edges(g_t, pos, width=3.0, edge_color='black', alpha=0.6) # nodes (intersections and dead-ends) pos_x = {k: (g_t.node[k]['lon'], g_t.node[k]['lat']) for k in g_t.nodes() if (g_t.degree(k)==1) | (g_t.degree(k)>2)} nx.draw_networkx_nodes(g_t, pos_x, nodelist=pos_x.keys(), node_size=35.0, node_color='red', alpha=0.9) mplleaflet.save_html(fig, 'maps/trails_only_intersections.html')
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
49b6770a53521e60ee77a5a265b4fa68
<iframe src="https://cdn.rawgit.com/brooksandrew/postman_problems_examples/master/sleepinggiant/maps/trails_only_intersections.html" height="400" width="750"></iframe> Viz Trail Color Because we can and it's pretty.
name2color = { 'Green Trail': 'green', 'Quinnipiac Trail': 'blue', 'Tower Trail': 'black', 'Yellow Trail': 'yellow', 'Red Square Trail': 'red', 'White/Blue Trail Link': 'lightblue', 'Orange Trail': 'orange', 'Mount Carmel Avenue': 'black', 'Violet Trail': 'violet', 'blue Trail': 'blue', 'Red Triangle Trail': 'red', 'Blue Trail': 'blue', 'Blue/Violet Trail Link': 'purple', 'Red Circle Trail': 'red', 'White Trail': 'gray', 'Red Diamond Trail': 'red', 'Yellow/Green Trail Link': 'yellowgreen', 'Nature Trail': 'forestgreen', 'Red Hexagon Trail': 'red', None: 'black' } fig, ax = plt.subplots(figsize=(1,10)) pos = {k: (g_t.node[k]['lon'], g_t.node[k]['lat']) for k in g_t.nodes()} e_color = [name2color[e[2].get('name')] for e in g_t.edges(data=True)] nx.draw_networkx_edges(g_t, pos, width=3.0, edge_color=e_color, alpha=0.5) nx.draw_networkx_nodes(g_t, pos_x, nodelist=pos_x.keys(), node_size=30.0, node_color='black', alpha=0.9) mplleaflet.save_html(fig, 'maps/trails_only_color.html', tiles='cartodb_positron')
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
b2b1fee84c8fabd4ae79655008d1c9b9
<iframe src="https://cdn.rawgit.com/brooksandrew/postman_problems_examples/master/sleepinggiant/maps/trails_only_color.html" height="400" width="750"></iframe> Check distance This is strikingly close (within 0.25 miles) to what I calculated manually with some guess work from the SG trail map on the first pass at this problem here, before leveraging OSM.
print('{:0.2f} miles of required trail.'.format(sum([e[2]['distance']/1609.34 for e in g_t.edges(data=True)])))
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
4c518501a047f7511bbc5a8486a77d0e
Contract Edges We could run the RPP algorithm on the graph as-is with >5000 edges. However, we can simplify computation by contracting edges into logical trail segments first. More details on the intuition and methodology in the 50 states post.
print('Number of edges in trail graph: {}'.format(len(g_t.edges()))) # intialize contracted graph g_tc = nx.MultiGraph() # add contracted edges to graph for ce in contract_edges(g_t, 'distance'): start_node, end_node, distance, path = ce contracted_edge = { 'start_node': start_node, 'end_node': end_node, 'distance': distance, 'name': g[path[0]][path[1]].get('name'), 'required': 1, 'path': path } g_tc.add_edge(start_node, end_node, **contracted_edge) g_tc.node[start_node]['lat'] = g.node[start_node]['lat'] g_tc.node[start_node]['lon'] = g.node[start_node]['lon'] g_tc.node[end_node]['lat'] = g.node[end_node]['lat'] g_tc.node[end_node]['lon'] = g.node[end_node]['lon']
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
90d85e8550eb2c8eb3e2059178cecdc5
Edge contraction reduces the number of edges fed to the RPP algorithm by a factor of ~40.
print('Number of edges in contracted trail graoh: {}'.format(len(g_tc.edges())))
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
0f599daa64d1c3817ee20d4456c1df47
Solve CPP First, let's see how well the Chinese Postman solution works. Create CPP edgelist
# create list with edge attributes and "from" & "to" nodes tmp = [] for e in g_tc.edges(data=True): tmpi = e[2].copy() # so we don't mess w original graph tmpi['start_node'] = e[0] tmpi['end_node'] = e[1] tmp.append(tmpi) # create dataframe w node1 and node2 in order eldf = pd.DataFrame(tmp) eldf = eldf[['start_node', 'end_node'] + list(set(eldf.columns)-{'start_node', 'end_node'})] # create edgelist mock CSV elfn = create_mock_csv_from_dataframe(eldf)
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
bbd17349337698fecab72c72bacfae4a
Start node The route is designed to start at the far east end of the park on the Blue trail (node '735393342'). While the CPP and RPP solutions will return a Eulerian circuit (loop back to the starting node), we could truncate this last long doublebacking segment when actually running the route <img src="https://github.com/brooksandrew/postman_problems_examples/raw/master/sleepinggiant/fig/sleepinggiant_starting_node.png" width="600"> Solve
circuit_cpp, gcpp = cpp(elfn, start_node='735393342')
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
d1484b7d33a8e5d71e2cc19b3891b3b1
CPP Stats (distances in meters)
cpp_stats = calculate_postman_solution_stats(circuit_cpp) cpp_stats print('Miles in CPP solution: {:0.2f}'.format(cpp_stats['distance_walked']/1609.34))
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
7483a9cb3e602f3710555953505f6817
Solve RPP With the CPP as benchmark, let's see how well we do when we allow for optional edges in the route.
%%time dfrpp = create_rpp_edgelist(g_tc, graph_full=g, edge_weight='distance', max_distance=2500)
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
48cad7b6e4679729c704f7335274727e
Required vs optional edge counts (1=required and 0=optional)
Counter( dfrpp['required'])
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
113129279e549a9b85078d6cf3d4107d
Solve RPP
# create mockfilename elfn = create_mock_csv_from_dataframe(dfrpp) %%time # solve circuit_rpp, grpp = rpp(elfn, start_node='735393342')
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
ea944b46c81ec33a48e8c773e6b32206
RPP Stats (distances in meters)
rpp_stats = calculate_postman_solution_stats(circuit_rpp) rpp_stats
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
bbae978f15bcb337c00d6c2277abed0f
Leveraging the optional roads and trails, we're able to shave a about 3 miles off the CPP route. Total mileage checks in at 30.71, just under a 50K (30.1 miles).
print('Miles in RPP solution: {:0.2f}'.format(rpp_stats['distance_walked']/1609.34))
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
cddfaad3ef7a4582cfb95b0104d24210
Viz RPP Solution
# hack to convert 'path' from str back to list. Caused by `create_mock_csv_from_dataframe` for e in circuit_rpp: if type(e[3]['path']) == str: exec('e[3]["path"]=' + e[3]["path"])
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
cc4f729e1c9bbb41cbf91d99a6996c05
Create graph from RPP solution
g_tcg = g_tc.copy() # calc shortest path between optional nodes and add to graph for e in circuit_rpp: granular_type = 'trail' if e[3]['required'] else 'optional' # add granular optional edges to g_tcg path = e[3]['path'] for pair in list(zip(path[:-1], path[1:])): if (g_tcg.has_edge(pair[0], pair[1])) and (g_tcg[pair[0]][pair[1]][0].get('granular_type') == 'optional'): g_tcg[pair[0]][pair[1]][0]['granular_type'] = 'trail' else: g_tcg.add_edge(pair[0], pair[1], granular='True', granular_type=granular_type) # add granular nodes from optional edge paths to g_tcg for n in path: g_tcg.add_node(n, lat=g.node[n]['lat'], lon=g.node[n]['lon'])
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
c0359d5b43bf291b3920a6640fd591e2
Viz: RPP optional edges The RPP algorithm picks up some logical shortcuts using the optional trails and a couple short stretches of road. <font color='black'>black</font>: required trails <font color='blue'>blue</font>: optional trails and roads
fig, ax = plt.subplots(figsize=(1,8)) pos = {k: (g_tcg.node[k].get('lon'), g_tcg.node[k].get('lat')) for k in g_tcg.nodes()} el_opt = [e for e in g_tcg.edges(data=True) if e[2].get('granular_type') == 'optional'] nx.draw_networkx_edges(g_tcg, pos, edgelist=el_opt, width=6.0, edge_color='blue', alpha=1.0) el_tr = [e for e in g_tcg.edges(data=True) if e[2].get('granular_type') == 'trail'] nx.draw_networkx_edges(g_tcg, pos, edgelist=el_tr, width=3.0, edge_color='black', alpha=0.8) mplleaflet.save_html(fig, 'maps/rpp_solution_opt_edges.html', tiles='cartodb_positron')
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
636a1ee7816d749a3fe0044f9f10095e
<iframe src="https://cdn.rawgit.com/brooksandrew/postman_problems_examples/master/sleepinggiant/maps/rpp_solution_opt_edges.html" height="400" width="750"></iframe> Viz: RPP edges counts
## Create graph directly from rpp_circuit and original graph w lat/lon (g) color_seq = [None, 'black', 'magenta', 'orange', 'yellow'] grppviz = nx.MultiGraph() for e in circuit_rpp: for n1, n2 in zip(e[3]['path'][:-1], e[3]['path'][1:]): if grppviz.has_edge(n1, n2): grppviz[n1][n2][0]['linewidth'] += 2 grppviz[n1][n2][0]['cnt'] += 1 else: grppviz.add_edge(n1, n2, linewidth=2.5) grppviz[n1][n2][0]['color_st'] = 'black' if g_t.has_edge(n1, n2) else 'red' grppviz[n1][n2][0]['cnt'] = 1 grppviz.add_node(n1, lat=g.node[n1]['lat'], lon=g.node[n1]['lon']) grppviz.add_node(n2, lat=g.node[n2]['lat'], lon=g.node[n2]['lon']) for e in grppviz.edges(data=True): e[2]['color_cnt'] = color_seq[1] if 'cnt' not in e[2] else color_seq[e[2]['cnt'] ]
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
92a6b49a7ad6849ea3e96f80e8f0d736
Edge walks per color: <font color='black'>black</font>: 1 <br> <font color='magenta'>magenta</font>: 2 <br>
fig, ax = plt.subplots(figsize=(1,10)) pos = {k: (grppviz.node[k]['lon'], grppviz.node[k]['lat']) for k in grppviz.nodes()} e_width = [e[2]['linewidth'] for e in grppviz.edges(data=True)] e_color = [e[2]['color_cnt'] for e in grppviz.edges(data=True)] nx.draw_networkx_edges(grppviz, pos, width=e_width, edge_color=e_color, alpha=0.7) mplleaflet.save_html(fig, 'maps/rpp_solution_edge_cnts.html', tiles='cartodb_positron')
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
8aefbf3bb5e2af231d717af88a69fc5a
<iframe src="https://cdn.rawgit.com/brooksandrew/postman_problems_examples/master/sleepinggiant/maps/rpp_solution_edge_cnts.html" height="400" width="750"></iframe> Create geojson solution Used for the forthcoming D3 route animation.
geojson = {'features':[], 'type': 'FeatureCollection'} time = 0 path = list(reversed(circuit_rpp[0][3]['path'])) for e in circuit_rpp: if e[3]['path'][0] != path[-1]: path = list(reversed(e[3]['path'])) else: path = e[3]['path'] for n in path: time += 1 doc = {'type': 'Feature', 'properties': { 'latitude': g.node[n]['lat'], 'longitude': g.node[n]['lon'], 'time': time, 'id': e[3].get('id') }, 'geometry':{ 'type': 'Point', 'coordinates': [g.node[n]['lon'], g.node[n]['lat']] } } geojson['features'].append(doc) with open('circuit_rpp.geojson','w') as f: json.dump(geojson, f)
_ipynb/2017-12-01-sleeping-giant-rural-postman-problem.ipynb
brooksandrew/simpleblog
mit
897df53c0c86d908eb0d82dd4646d526