import json import datasets _DESCRIPTION = """\ Grapheme-to-Phoneme training, validation and test sets """ _BASE_URL = "https://huggingface.co/datasets/Matilde/Homo_ita/resolve/main/dataset" _HOMEPAGE_URL = "https://huggingface.co/datasets/Matilde/Homo_ita" _NA = "N/A" _SPLIT_TYPES = ["train", "valid", "test"] _DATA_TYPES = ["lexicon", "sentence"] _SPLITS = [ f"{data_type}_{split_type}" for data_type in _DATA_TYPES for split_type in _SPLIT_TYPES ] class GraphemeToPhoneme(datasets.GeneratorBasedBuilder): def __init__(self, base_url=None, splits=None, *args, **kwargs): super().__init__(*args, **kwargs) self.base_url = base_url or _BASE_URL self.splits = splits or _SPLITS def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "sample_id": datasets.Value("string"), "speaker_id": datasets.Value("string"), "origin": datasets.Value("string"), "char": datasets.Value("string"), "phn": datasets.Sequence(datasets.Value("string")), }, ), supervised_keys=None, homepage=_HOMEPAGE_URL, ) def _get_url(self, split): return f"{self.base_url}/{split}.json" def _split_generator(self, dl_manager, split): url = self._get_url(split) path = dl_manager.download_and_extract(url) return datasets.SplitGenerator( name=split, gen_kwargs={"datapath": path, "datatype": split}, ) def _split_generators(self, dl_manager): return [self._split_generator(dl_manager, split) for split in self.splits] def _generate_examples(self, datapath, datatype): with open(datapath, encoding="utf-8") as f: data = json.load(f) for sentence_counter, (sample_id, item) in enumerate(data.items()): resp = { "sample_id": sample_id, "speaker_id": str(item.get("speaker_id") or _NA), "origin": item["origin"], "char": item["char"], "phn": item["phn"], } yield sentence_counter, resp