File size: 5,604 Bytes
aeb048f 9806ae0 836ec83 1eddce7 836ec83 7d1a089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: mit
language:
- en
pretty_name: VoxCelebSpoof
task_categories:
- audio-classification
- text-to-speech
tags:
- code
size_categories:
- 1K<n<10K
---
# VoxCelebSpoof
VoxCelebSpoof is a dataset related to detecting spoofing attacks on automatic speaker verification systems. This dataset is part of a broader effort to improve the security of voice biometric systems against various types of spoofing attacks, such as replay attacks, voice synthesis, and voice conversion.
## Dataset Details
### Dataset Description
The VoxCelebSpoof dataset includes a range of audio samples from different types of synthesis spoofs. The goal of the dataset is to develop systems that can accurately distinguish between genuine and spoofed audio samples.
Key features and objectives of VoxCelebSpoof include:
- **Data Diversity:** The dataset is derived from VoxCeleb, a large-scale speaker identification dataset containing celebrity interviews. Due to this, the spoofing detection models trained on VoxCelebSpoof are exposed to various accents, languages, and acoustic environments.
- **Synthetic Varieties:** The spoofs include a variety of synthetic (TTS) attacks, such as high-quality synthetic speech, using AI-based voice cloning, and challenging systems to recognise and defend against a range of synthetic vulnerabilities.
- **Benchmarking:** VoxCelebSpoof can serve as a benchmark for comparing the performance of different spoofing detection systems under standardised conditions.
- **Research and Development:** The dataset encourages the research community to innovate in anti-spoofing for voice biometric systems, promoting advancements in techniques like feature extraction, classification algorithms, and deep learning.
- **Curated by:** Matthew Boakes
- **Funded by:** Bill & Melinda Gates Foundation
- **Shared by:** Alan Turing Institute
- **Language(s) (NLP):** English
- **License:** MIT
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |