|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""FeedbackQA: An Retrieval-based Question Answering Dataset with User Feedback""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
import os |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
FeedbackQA is a retrieval-based QA dataset \ |
|
that contains interactive feedback from users. \ |
|
It has two parts: the first part contains a conventional RQA dataset, \ |
|
whilst this repo contains the second part, which contains feedback(ratings and natural language explanations) for QA pairs. |
|
""" |
|
|
|
_URL = "https://drive.google.com/drive/folders/1mIcxZZ643k6SVJnZw1FmEOhndaFx4_PG?usp=sharing" |
|
|
|
|
|
|
|
|
|
|
|
|
|
class FeedbackConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for FeedbackQA.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for FeedbackQA. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(FeedbackConfig, self).__init__(**kwargs) |
|
|
|
|
|
class FeedbackQA(datasets.GeneratorBasedBuilder): |
|
"""FeedbackQA: retrieval-based QA dataset that contains interactive feedback from users.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
FeedbackConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
|
|
|
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"feedback": datasets.features.Sequence( |
|
{ |
|
"rating": datasets.Value("string"), |
|
"explanation": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://mcgill-nlp.github.io/feedbackQA_data/", |
|
citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files_path = dl_manager.download_and_extract(_URL) |
|
train_file = os.path.join(downloaded_files_path, 'feedback_train.json') |
|
valid_file = os.path.join(downloaded_files_path, 'feedback_valid.json') |
|
test_file = os.path.join(downloaded_files_path, 'feedback_test.json') |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_file}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_file}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_file}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
fbqa = json.load(f) |
|
for dict_item in fbqa: |
|
question = dict_item['question'] |
|
passage_text = '' |
|
if dict_item['passage']['reference']['page_title']: |
|
passage_text += dict_item['passage']['reference']['page_title'] + '\n' |
|
if dict_item['passage']['reference']['section_headers']: |
|
passage_text += '\n'.join(dict_item['passage']['reference']['section_headers']) + '\n' |
|
if dict_item['passage']['reference']['section_content']: |
|
passage_text += dict_item['passage']['reference']['section_content'] |
|
|
|
yield key, { |
|
"question": question, |
|
"answer": passage_text, |
|
"feedback": { |
|
"rating": dict_item['rating'], |
|
"explanation": dict_item['feedback'], |
|
}, |
|
} |
|
key += 1 |