Commit
·
4aab736
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +161 -0
- dataset_infos.json +1 -0
- dummy/1.0.0/dummy_data.zip +3 -0
- medal.py +146 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- expert-generated
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- n<1K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- other
|
18 |
+
task_ids:
|
19 |
+
- other-other-disambiguation
|
20 |
+
---
|
21 |
+
# Dataset Card Creation Guide
|
22 |
+
|
23 |
+
## Table of Contents
|
24 |
+
- [Dataset Description](#dataset-description)
|
25 |
+
- [Dataset Summary](#dataset-summary)
|
26 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
27 |
+
- [Languages](#languages)
|
28 |
+
- [Dataset Structure](#dataset-structure)
|
29 |
+
- [Data Instances](#data-instances)
|
30 |
+
- [Data Fields](#data-instances)
|
31 |
+
- [Data Splits](#data-instances)
|
32 |
+
- [Dataset Creation](#dataset-creation)
|
33 |
+
- [Curation Rationale](#curation-rationale)
|
34 |
+
- [Source Data](#source-data)
|
35 |
+
- [Annotations](#annotations)
|
36 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
37 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
38 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
39 |
+
- [Discussion of Biases](#discussion-of-biases)
|
40 |
+
- [Other Known Limitations](#other-known-limitations)
|
41 |
+
- [Additional Information](#additional-information)
|
42 |
+
- [Dataset Curators](#dataset-curators)
|
43 |
+
- [Licensing Information](#licensing-information)
|
44 |
+
- [Citation Information](#citation-information)
|
45 |
+
|
46 |
+
## Dataset Description
|
47 |
+
|
48 |
+
- **Homepage:** []()
|
49 |
+
- **Repository:** [https://github.com/BruceWen120/medal]()
|
50 |
+
- **Paper:** [https://www.aclweb.org/anthology/2020.clinicalnlp-1.15/]()
|
51 |
+
- **Dataset (Kaggle):** [https://www.kaggle.com/xhlulu/medal-emnlp]()
|
52 |
+
- **Dataset (Zenodo):** [https://zenodo.org/record/4265632]()
|
53 |
+
- **Pretrained model:** [https://huggingface.co/xhlu/electra-medal]()
|
54 |
+
- **Leaderboard:** []()
|
55 |
+
- **Point of Contact:** []()
|
56 |
+
|
57 |
+
### Dataset Summary
|
58 |
+
|
59 |
+
A large medical text dataset (14Go) curated to 4Go for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. For example, DHF can be disambiguated to dihydrofolate, diastolic heart failure, dengue hemorragic fever or dihydroxyfumarate
|
60 |
+
|
61 |
+
### Supported Tasks and Leaderboards
|
62 |
+
|
63 |
+
Medical abbreviation disambiguation
|
64 |
+
|
65 |
+
### Languages
|
66 |
+
|
67 |
+
English (en)
|
68 |
+
|
69 |
+
## Dataset Structure
|
70 |
+
|
71 |
+
[More Information Needed]
|
72 |
+
|
73 |
+
### Data Instances
|
74 |
+
|
75 |
+
[More Information Needed]
|
76 |
+
|
77 |
+
### Data Fields
|
78 |
+
|
79 |
+
[More Information Needed]
|
80 |
+
|
81 |
+
### Data Splits
|
82 |
+
|
83 |
+
[More Information Needed]
|
84 |
+
|
85 |
+
## Dataset Creation
|
86 |
+
|
87 |
+
|
88 |
+
### Curation Rationale
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
### Source Data
|
93 |
+
|
94 |
+
[More Information Needed]
|
95 |
+
|
96 |
+
#### Initial Data Collection and Normalization
|
97 |
+
|
98 |
+
[More Information Needed]
|
99 |
+
|
100 |
+
#### Who are the source language producers?
|
101 |
+
|
102 |
+
[More Information Needed]
|
103 |
+
|
104 |
+
### Annotations
|
105 |
+
|
106 |
+
[More Information Needed]
|
107 |
+
|
108 |
+
#### Annotation process
|
109 |
+
|
110 |
+
[More Information Needed]
|
111 |
+
|
112 |
+
#### Who are the annotators?
|
113 |
+
|
114 |
+
[More Information Needed]
|
115 |
+
|
116 |
+
### Personal and Sensitive Information
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
## Considerations for Using the Data
|
121 |
+
|
122 |
+
### Social Impact of Dataset
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Discussion of Biases
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
### Other Known Limitations
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
## Additional Information
|
135 |
+
|
136 |
+
### Dataset Curators
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
### Licensing Information
|
141 |
+
|
142 |
+
[More Information Needed]
|
143 |
+
|
144 |
+
### Citation Information
|
145 |
+
|
146 |
+
```
|
147 |
+
@inproceedings{wen-etal-2020-medal,
|
148 |
+
title = "{M}e{DAL}: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining",
|
149 |
+
author = "Wen, Zhi and
|
150 |
+
Lu, Xing Han and
|
151 |
+
Reddy, Siva",
|
152 |
+
booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
|
153 |
+
month = nov,
|
154 |
+
year = "2020",
|
155 |
+
address = "Online",
|
156 |
+
publisher = "Association for Computational Linguistics",
|
157 |
+
url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.15",
|
158 |
+
pages = "130--135",
|
159 |
+
abstract = "One of the biggest challenges that prohibit the use of many current NLP methods in clinical settings is the availability of public datasets. In this work, we present MeDAL, a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. We pre-trained several models of common architectures on this dataset and empirically showed that such pre-training leads to improved performance and convergence speed when fine-tuning on downstream medical tasks.",
|
160 |
+
}
|
161 |
+
```
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "A large medical text dataset (14Go) curated to 4Go for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. For example, DHF can be disambiguated to dihydrofolate, diastolic heart failure, dengue hemorragic fever or dihydroxyfumarate\n", "citation": "@inproceedings{wen-etal-2020-medal,\n title = \"{M}e{DAL}: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining\",\n author = \"Wen, Zhi and\n Lu, Xing Han and\n Reddy, Siva\",\n booktitle = \"Proceedings of the 3rd Clinical Natural Language Processing Workshop\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.clinicalnlp-1.15\",\n pages = \"130--135\",\n abstract = \"One of the biggest challenges that prohibit the use of many current NLP methods in clinical settings is the availability of public datasets. In this work, we present MeDAL, a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. We pre-trained several models of common architectures on this dataset and empirically showed that such pre-training leads to improved performance and convergence speed when fine-tuning on downstream medical tasks.\",\n}", "homepage": "https://github.com/BruceWen120/medal", "license": "", "features": {"abstract_id": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "location": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "label": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "medal", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3573399948, "num_examples": 3000000, "dataset_name": "medal"}, "test": {"name": "test", "num_bytes": 1190766821, "num_examples": 1000000, "dataset_name": "medal"}, "validation": {"name": "validation", "num_bytes": 1191410723, "num_examples": 1000000, "dataset_name": "medal"}, "full": {"name": "full", "num_bytes": 15536883723, "num_examples": 14393619, "dataset_name": "medal"}}, "download_checksums": {"https://zenodo.org/record/4276178/files/train.csv": {"num_bytes": 3541556520, "checksum": "c5fef2feebd1ecd35b4fe7a0aec266b631c0ac511d4d6b685835328b1ffbf32d"}, "https://zenodo.org/record/4276178/files/test.csv": {"num_bytes": 1180152075, "checksum": "ad391a63449c2bbbdbdf8d1827da4c053607a8586f4162174ba4ccf13efd8f86"}, "https://zenodo.org/record/4276178/files/valid.csv": {"num_bytes": 1180795804, "checksum": "08a0a6c2ee40747744ec15675ab5dc1e2b04491ca951b14c15d8d7bf9d33694d"}, "https://zenodo.org/record/4276178/files/full_data.csv": {"num_bytes": 15158424679, "checksum": "70f1ad891bdf98a42395a8907b48284457ae36d17fcc5a0a9c65c0b6b45ecf8d"}}, "download_size": 21060929078, "post_processing_size": null, "dataset_size": 21492461215, "size_in_bytes": 42553390293}}
|
dummy/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d4a921d222c4bbe5efd7ee2ce77bf13e0dbe7d5a848206327ff44d679109026
|
3 |
+
size 3772
|
medal.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""MeDAL: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining"""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import csv
|
22 |
+
import logging
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
_CITATION = """\
|
31 |
+
@inproceedings{wen-etal-2020-medal,
|
32 |
+
title = "{M}e{DAL}: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining",
|
33 |
+
author = "Wen, Zhi and
|
34 |
+
Lu, Xing Han and
|
35 |
+
Reddy, Siva",
|
36 |
+
booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
|
37 |
+
month = nov,
|
38 |
+
year = "2020",
|
39 |
+
address = "Online",
|
40 |
+
publisher = "Association for Computational Linguistics",
|
41 |
+
url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.15",
|
42 |
+
pages = "130--135",
|
43 |
+
abstract = "One of the biggest challenges that prohibit the use of many current NLP methods in clinical settings is the availability of public datasets. In this work, we present MeDAL, a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. We pre-trained several models of common architectures on this dataset and empirically showed that such pre-training leads to improved performance and convergence speed when fine-tuning on downstream medical tasks.",
|
44 |
+
}"""
|
45 |
+
|
46 |
+
_DESCRIPTION = """\
|
47 |
+
A large medical text dataset (14Go) curated to 4Go for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. For example, DHF can be disambiguated to dihydrofolate, diastolic heart failure, dengue hemorragic fever or dihydroxyfumarate
|
48 |
+
"""
|
49 |
+
|
50 |
+
_URL = "https://zenodo.org/record/4276178/files/"
|
51 |
+
_URLS = {
|
52 |
+
"train": _URL + "train.csv",
|
53 |
+
"test": _URL + "test.csv",
|
54 |
+
"valid": _URL + "valid.csv",
|
55 |
+
"full": _URL + "full_data.csv",
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
class Medal(datasets.GeneratorBasedBuilder):
|
60 |
+
"""Medal: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining"""
|
61 |
+
|
62 |
+
VERSION = datasets.Version("1.0.0")
|
63 |
+
|
64 |
+
def _info(self):
|
65 |
+
return datasets.DatasetInfo(
|
66 |
+
# This is the description that will appear on the datasets page.
|
67 |
+
description=_DESCRIPTION,
|
68 |
+
# datasets.features.FeatureConnectors
|
69 |
+
features=datasets.Features(
|
70 |
+
{
|
71 |
+
"abstract_id": datasets.Value("int32"),
|
72 |
+
"text": datasets.Value("string"),
|
73 |
+
"location": datasets.Sequence(datasets.Value("int32")),
|
74 |
+
"label": datasets.Sequence(datasets.Value("string")),
|
75 |
+
# These are the features of your dataset like images, labels ...
|
76 |
+
}
|
77 |
+
),
|
78 |
+
# If there's a common (input, target) tuple from the features,
|
79 |
+
# specify them here. They'll be used if as_supervised=True in
|
80 |
+
# builder.as_dataset.
|
81 |
+
supervised_keys=None,
|
82 |
+
# Homepage of the dataset for documentation
|
83 |
+
homepage="https://github.com/BruceWen120/medal",
|
84 |
+
citation=_CITATION,
|
85 |
+
)
|
86 |
+
|
87 |
+
def _split_generators(self, dl_manager):
|
88 |
+
"""Returns SplitGenerators."""
|
89 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
90 |
+
# download and extract URLs
|
91 |
+
urls_to_dl = _URLS
|
92 |
+
try:
|
93 |
+
dl_dir = dl_manager.download_and_extract(urls_to_dl)
|
94 |
+
except Exception:
|
95 |
+
logger.warning(
|
96 |
+
"This dataset is downloaded through Zenodo which is flaky. If this download failed try a few times before reporting an issue"
|
97 |
+
)
|
98 |
+
raise
|
99 |
+
|
100 |
+
return [
|
101 |
+
datasets.SplitGenerator(
|
102 |
+
name=datasets.Split.TRAIN,
|
103 |
+
# These kwargs will be passed to _generate_examples
|
104 |
+
gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
|
105 |
+
),
|
106 |
+
datasets.SplitGenerator(
|
107 |
+
name=datasets.Split.TEST,
|
108 |
+
# These kwargs will be passed to _generate_examples
|
109 |
+
gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
|
110 |
+
),
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.VALIDATION,
|
113 |
+
# These kwargs will be passed to _generate_examples
|
114 |
+
gen_kwargs={"filepath": dl_dir["valid"], "split": "val"},
|
115 |
+
),
|
116 |
+
datasets.SplitGenerator(
|
117 |
+
name="full",
|
118 |
+
# These kwargs will be passed to _generate_examples
|
119 |
+
gen_kwargs={"filepath": dl_dir["full"], "split": "full"},
|
120 |
+
),
|
121 |
+
]
|
122 |
+
|
123 |
+
def _generate_examples(self, filepath, split):
|
124 |
+
"""Yields examples."""
|
125 |
+
with open(filepath, encoding="utf-8") as f:
|
126 |
+
data = csv.reader(f)
|
127 |
+
# Skip header
|
128 |
+
next(data)
|
129 |
+
# print(split, filepath, next(data))
|
130 |
+
if split == "full":
|
131 |
+
id_ = 0
|
132 |
+
for id_, row in enumerate(data):
|
133 |
+
yield id_, {
|
134 |
+
"abstract_id": -1,
|
135 |
+
"text": row[0],
|
136 |
+
"location": [int(location) for location in row[1].split("|")],
|
137 |
+
"label": row[2].split("|"),
|
138 |
+
}
|
139 |
+
else:
|
140 |
+
for id_, row in enumerate(data):
|
141 |
+
yield id_, {
|
142 |
+
"abstract_id": int(row[0]),
|
143 |
+
"text": row[1],
|
144 |
+
"location": [int(row[2])],
|
145 |
+
"label": [row[3]],
|
146 |
+
}
|