File size: 4,605 Bytes
61740cb
630cdf5
61740cb
 
 
 
0094b94
61740cb
 
630cdf5
 
85a37ac
 
 
 
5e6866e
0094b94
 
 
f755e76
0094b94
f755e76
630cdf5
0094b94
f755e76
 
120d732
0094b94
 
f755e76
61740cb
 
0094b94
 
61740cb
 
 
120d732
0094b94
 
120d732
 
61740cb
f755e76
0094b94
 
f755e76
61740cb
 
0094b94
 
61740cb
f755e76
0094b94
 
 
 
630cdf5
61740cb
 
 
0094b94
 
61740cb
 
630cdf5
61740cb
 
 
 
6a58a50
 
 
61740cb
630cdf5
61740cb
 
 
 
0094b94
 
61740cb
0094b94
61740cb
f755e76
5e6866e
 
 
 
0094b94
 
 
 
 
 
 
5e6866e
0094b94
5e6866e
 
0094b94
5e6866e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks"""
from __future__ import annotations
from pathlib import Path
import numpy as np
import torch as tr
import flow_vis
from skimage.color import rgb2hsv
from overrides import overrides
from matplotlib.cm import hot # pylint: disable=no-name-in-module
from torch.nn import functional as F

try:
    from npz_representation import NpzRepresentation
except ImportError:
    from .npz_representation import NpzRepresentation

class RGBRepresentation(NpzRepresentation):
    def __init__(self, name: str):
        super().__init__(name, n_channels=3)

class HSVRepresentation(RGBRepresentation):
    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        rgb = super().load_from_disk(path)
        return tr.from_numpy(rgb2hsv(rgb)).float()

class EdgesRepresentation(NpzRepresentation):
    def __init__(self, name: str):
        super().__init__(name, n_channels=1)

class DepthRepresentation(NpzRepresentation):
    """DepthRepresentation. Implements depth task-specific stuff, like hotmap."""
    def __init__(self, name: str):
        super().__init__(name, n_channels=1)

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        x = x.detach().clip(0, 1).squeeze().cpu().numpy()
        _min, _max = np.percentile(x, [5, 95])
        x = np.nan_to_num((x - _min) / (_max - _min), False, 0, 0, 0).clip(0, 1)
        y: np.ndarray = hot(x)[..., 0:3] * 255
        return y.astype(np.uint8)

class NormalsRepresentation(NpzRepresentation):
    def __init__(self, name: str):
        super().__init__(name, n_channels=3)

class OpticalFlowRepresentation(NpzRepresentation):
    """OpticalFlowRepresentation. Implements depth task-specific stuff, like using flow_vis."""
    def __init__(self, name: str):
        super().__init__(name, n_channels=2)

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        _min, _max = x.min(0)[0].min(0)[0], x.max(0)[0].max(0)[0]
        x = ((x - _min) / (_max - _min)).nan_to_num(0, 0, 0).detach().cpu().numpy()
        return flow_vis.flow_to_color(x)

class SemanticRepresentation(NpzRepresentation):
    """SemanticRepresentation. Implements depth task-specific stuff, like using flow_vis."""
    def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs):
        self.n_classes = len(list(range(classes)) if isinstance(classes, int) else classes)
        super().__init__(*args, **kwargs, n_channels=self.n_classes)
        self.classes = list(range(classes)) if isinstance(classes, int) else classes
        self.color_map = color_map
        assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes)

    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path)
        if len(res.shape) == 3:
            assert res.shape[-1] == self.n_classes, f"Expected {self.n_classes} (HxWxC), got {res.shape[-1]}"
            res = res.argmax(-1)
        assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}"
        res = F.one_hot(res.long(), num_classes=self.n_classes).float()
        return res

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        x_argmax = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy()
        new_images = np.zeros((*x_argmax.shape, 3), dtype=np.uint8)
        for i in range(self.n_classes):
            new_images[x_argmax == i] = self.color_map[i]
        return new_images

_color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
              [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
_m2f_name = "semantic_mask2former_swin_mapillary_converted"
dronescapes_task_types = { # some pre-baked representations
    "rgb": RGBRepresentation("rgb"),
    "hsv": HSVRepresentation("hsv"),
    "edges_dexined": EdgesRepresentation("edges_dexined"),
    "edges_gb": EdgesRepresentation("edges_gb"),
    "depth_dpt": DepthRepresentation("depth_dpt"),
    "depth_sfm_manual202204": DepthRepresentation("depth_sfm_manual202204"),
    "depth_ufo": DepthRepresentation("depth_ufo"),
    "normals_sfm_manual202204": NormalsRepresentation("normals_sfm_manual202204"),
    "opticalflow_rife": OpticalFlowRepresentation("opticalflow_rife"),
    "semantic_segprop8": SemanticRepresentation("semantic_segprop8", classes=8, color_map=_color_map),
    _m2f_name: SemanticRepresentation(_m2f_name, classes=8, color_map=_color_map),
    "softseg_gb": NpzRepresentation("softseg_gb", 3),
}