File size: 15,937 Bytes
61740cb 630cdf5 61740cb 58c45ab 61740cb 0094b94 61740cb 22a896e 630cdf5 85a37ac 5e6866e 0094b94 58c45ab f755e76 0094b94 f755e76 630cdf5 0094b94 f755e76 120d732 58c45ab f755e76 61740cb 58c45ab 8475432 61740cb 120d732 8475432 0094b94 22a896e 120d732 61740cb f755e76 58c45ab f755e76 61740cb 58c45ab 61740cb f755e76 0094b94 630cdf5 61740cb 58c45ab 61740cb 0094b94 61740cb 630cdf5 61740cb 6a58a50 61740cb 630cdf5 61740cb 0094b94 61740cb 0094b94 61740cb f755e76 3a808fd 7b47e95 3a808fd 7b47e95 22a896e 3a808fd 7b47e95 3a808fd 7b47e95 3a808fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks"""
from __future__ import annotations
from pathlib import Path
from typing import Callable
import numpy as np
import torch as tr
import flow_vis
from skimage.color import rgb2hsv
from overrides import overrides
from matplotlib.cm import Spectral # pylint: disable=no-name-in-module
from torch.nn import functional as F
try:
from npz_representation import NpzRepresentation
except ImportError:
from .npz_representation import NpzRepresentation
class RGBRepresentation(NpzRepresentation):
def __init__(self, *args, **kwargs):
super().__init__(*args, n_channels=3, **kwargs)
class HSVRepresentation(RGBRepresentation):
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
rgb = super().load_from_disk(path)
return tr.from_numpy(rgb2hsv(rgb)).float()
class EdgesRepresentation(NpzRepresentation):
def __init__(self, *args, **kwargs):
super().__init__(*args, n_channels=1, **kwargs)
class DepthRepresentation(NpzRepresentation):
"""DepthRepresentation. Implements depth task-specific stuff, like spectral map for plots."""
def __init__(self, name: str, min_depth: float, max_depth: float, *args, **kwargs):
super().__init__(name, n_channels=1, *args, **kwargs)
self.min_depth = min_depth
self.max_depth = max_depth
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
"""Reads the npz data from the disk and transforms it properly"""
res = super().load_from_disk(path)
res_clip = res.clip(self.min_depth, self.max_depth)
return res_clip
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
x = x.detach().clip(0, 1).squeeze().cpu().numpy()
_min, _max = np.percentile(x, [1, 95])
x = np.nan_to_num((x - _min) / (_max - _min), False, 0, 0, 0).clip(0, 1)
y: np.ndarray = Spectral(x)[..., 0:3] * 255
return y.astype(np.uint8)
class NormalsRepresentation(NpzRepresentation):
def __init__(self, *args, **kwargs):
super().__init__(*args, n_channels=3, **kwargs)
class OpticalFlowRepresentation(NpzRepresentation):
"""OpticalFlowRepresentation. Implements flow task-specific stuff, like using flow_vis."""
def __init__(self, *args, **kwargs):
super().__init__(*args, n_channels=2, **kwargs)
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
_min, _max = x.min(0)[0].min(0)[0], x.max(0)[0].max(0)[0]
x = ((x - _min) / (_max - _min)).nan_to_num(0, 0, 0).detach().cpu().numpy()
return flow_vis.flow_to_color(x)
class SemanticRepresentation(NpzRepresentation):
"""SemanticRepresentation. Implements semantic task-specific stuff, like argmaxing if needed"""
def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs):
self.n_classes = len(list(range(classes)) if isinstance(classes, int) else classes)
super().__init__(*args, **kwargs, n_channels=self.n_classes)
self.classes = list(range(classes)) if isinstance(classes, int) else classes
self.color_map = color_map
assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes)
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path)
if len(res.shape) == 3:
assert res.shape[-1] == self.n_classes, f"Expected {self.n_classes} (HxWxC), got {res.shape[-1]}"
res = res.argmax(-1)
assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}"
res = F.one_hot(res.long(), num_classes=self.n_classes).float()
return res
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
x_argmax = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy()
new_images = np.zeros((*x_argmax.shape, 3), dtype=np.uint8)
for i in range(self.n_classes):
new_images[x_argmax == i] = self.color_map[i]
return new_images
def semantic_mapper(semantic_original: np.ndarray, mapping: dict[str, list[str]],
original_classes: list[str]) -> np.ndarray:
"""maps a bigger semantic segmentation to a smaller one"""
assert len(semantic_original.shape) == 2, f"Only argmaxed data supported, got: {semantic_original.shape}"
assert np.issubdtype(semantic_original.dtype, np.integer), semantic_original.dtype
mapping_ix = {list(mapping.keys()).index(k): [original_classes.index(_v) for _v in v] for k, v in mapping.items()}
flat_mapping = {}
for k, v in mapping_ix.items():
for _v in v:
flat_mapping[_v] = k
mapped_data = np.vectorize(flat_mapping.get)(semantic_original).astype(np.uint8)
return mapped_data
class TaskMapper(NpzRepresentation):
def __init__(self, *args, merge_fn: Callable[[list[np.ndarray]], tr.Tensor], **kwargs):
super().__init__(*args, **kwargs)
assert len(self.dependencies) > 0 and self.dep_names[0] != self.name, "Need at least one dependency"
self.merge_fn = merge_fn
def load_from_disk(self, path: Path | list[Path]) -> tr.Tensor:
paths = [path] if isinstance(path, Path) else path
dep_data = [dep.load_from_disk(path) for dep, path in zip(self.dependencies, paths)]
return self.merge_fn(dep_data)
def plot_fn(self, x):
raise NotImplementedError("Must be overriden by the user")
color_map_8classes = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
[255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
coco_classes = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard",
"cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush", "banner", "blanket", "bridge", "cardboard",
"counter", "curtain", "door-stuff", "floor-wood", "flower", "fruit", "gravel", "house", "light",
"mirror-stuff", "net", "pillow", "platform", "playingfield", "railroad", "river", "road", "roof",
"sand", "sea", "shelf", "snow", "stairs", "tent", "towel", "wall-brick", "wall-stone", "wall-tile",
"wall-wood", "water-other", "window-blind", "window-other", "tree-merged", "fence-merged",
"ceiling-merged", "sky-other-merged", "cabinet-merged", "table-merged", "floor-other-merged",
"pavement-merged", "mountain-merged", "grass-merged", "dirt-merged", "paper-merged",
"food-other-merged", "building-other-merged", "rock-merged", "wall-other-merged", "rug-merged"]
coco_color_map = [[220, 20, 60], [119, 11, 32], [0, 0, 142], [0, 0, 230], [106, 0, 228], [0, 60, 100], [0, 80, 100],
[0, 0, 70], [0, 0, 192], [250, 170, 30], [100, 170, 30], [220, 220, 0], [175, 116, 175], [250, 0, 30],
[165, 42, 42], [255, 77, 255], [0, 226, 252], [182, 182, 255], [0, 82, 0], [120, 166, 157],
[110, 76, 0], [174, 57, 255], [199, 100, 0], [72, 0, 118], [255, 179, 240], [0, 125, 92],
[209, 0, 151], [188, 208, 182], [0, 220, 176], [255, 99, 164], [92, 0, 73], [133, 129, 255],
[78, 180, 255], [0, 228, 0], [174, 255, 243], [45, 89, 255], [134, 134, 103], [145, 148, 174],
[255, 208, 186], [197, 226, 255], [171, 134, 1], [109, 63, 54], [207, 138, 255], [151, 0, 95],
[9, 80, 61], [84, 105, 51], [74, 65, 105], [166, 196, 102], [208, 195, 210], [255, 109, 65],
[0, 143, 149], [179, 0, 194], [209, 99, 106], [5, 121, 0], [227, 255, 205], [147, 186, 208],
[153, 69, 1], [3, 95, 161], [163, 255, 0], [119, 0, 170], [0, 182, 199], [0, 165, 120],
[183, 130, 88], [95, 32, 0], [130, 114, 135], [110, 129, 133], [166, 74, 118], [219, 142, 185],
[79, 210, 114], [178, 90, 62], [65, 70, 15], [127, 167, 115], [59, 105, 106], [142, 108, 45],
[196, 172, 0], [95, 54, 80], [128, 76, 255], [201, 57, 1], [246, 0, 122], [191, 162, 208],
[255, 255, 128], [147, 211, 203], [150, 100, 100], [168, 171, 172], [146, 112, 198],
[210, 170, 100], [92, 136, 89], [218, 88, 184], [241, 129, 0], [217, 17, 255], [124, 74, 181],
[70, 70, 70], [255, 228, 255], [154, 208, 0], [193, 0, 92], [76, 91, 113], [255, 180, 195],
[106, 154, 176], [230, 150, 140], [60, 143, 255], [128, 64, 128], [92, 82, 55], [254, 212, 124],
[73, 77, 174], [255, 160, 98], [255, 255, 255], [104, 84, 109], [169, 164, 131], [225, 199, 255],
[137, 54, 74], [135, 158, 223], [7, 246, 231], [107, 255, 200], [58, 41, 149], [183, 121, 142],
[255, 73, 97], [107, 142, 35], [190, 153, 153], [146, 139, 141], [70, 130, 180], [134, 199, 156],
[209, 226, 140], [96, 36, 108], [96, 96, 96], [64, 170, 64], [152, 251, 152], [208, 229, 228],
[206, 186, 171], [152, 161, 64], [116, 112, 0], [0, 114, 143], [102, 102, 156], [250, 141, 255]]
mapillary_classes = ["Bird", "Ground Animal", "Curb", "Fence", "Guard Rail", "Barrier", "Wall", "Bike Lane",
"Crosswalk - Plain", "Curb Cut", "Parking", "Pedestrian Area", "Rail Track", "Road",
"Service Lane", "Sidewalk", "Bridge", "Building", "Tunnel", "Person", "Bicyclist",
"Motorcyclist", "Other Rider", "Lane Marking - Crosswalk", "Lane Marking - General",
"Mountain", "Sand", "Sky", "Snow", "Terrain", "Vegetation", "Water", "Banner", "Bench",
"Bike Rack", "Billboard", "Catch Basin", "CCTV Camera", "Fire Hydrant", "Junction Box",
"Mailbox", "Manhole", "Phone Booth", "Pothole", "Street Light", "Pole", "Traffic Sign Frame",
"Utility Pole", "Traffic Light", "Traffic Sign (Back)", "Traffic Sign (Front)", "Trash Can",
"Bicycle", "Boat", "Bus", "Car", "Caravan", "Motorcycle", "On Rails", "Other Vehicle", "Trailer",
"Truck", "Wheeled Slow", "Car Mount", "Ego Vehicle"]
mapillary_color_map = [[165, 42, 42], [0, 192, 0], [196, 196, 196], [190, 153, 153], [180, 165, 180], [90, 120, 150],
[102, 102, 156], [128, 64, 255], [140, 140, 200], [170, 170, 170], [250, 170, 160], [96, 96, 96],
[230, 150, 140], [128, 64, 128], [110, 110, 110], [244, 35, 232], [150, 100, 100], [70, 70, 70],
[150, 120, 90], [220, 20, 60], [255, 0, 0], [255, 0, 100], [255, 0, 200], [200, 128, 128],
[255, 255, 255], [64, 170, 64], [230, 160, 50], [70, 130, 180], [190, 255, 255], [152, 251, 152],
[107, 142, 35], [0, 170, 30], [255, 255, 128], [250, 0, 30], [100, 140, 180], [220, 220, 220],
[220, 128, 128], [222, 40, 40], [100, 170, 30], [40, 40, 40], [33, 33, 33], [100, 128, 160],
[142, 0, 0], [70, 100, 150], [210, 170, 100], [153, 153, 153], [128, 128, 128], [0, 0, 80],
[250, 170, 30], [192, 192, 192], [220, 220, 0], [140, 140, 20], [119, 11, 32], [150, 0, 255],
[0, 60, 100], [0, 0, 142], [0, 0, 90], [0, 0, 230], [0, 80, 100], [128, 64, 64], [0, 0, 110],
[0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
class SemanticMask2FormerMapillaryConvertedPaper(TaskMapper):
def __init__(self, dep: NpzRepresentation):
super().__init__("semantic_mask2former_swin_mapillary_converted",
dependencies=[dep], merge_fn=self._merge_fn, n_channels=8)
self.mapping = {
"land": ["Terrain", "Sand", "Snow"],
"forest": ["Vegetation"],
"residential": ["Building", "Utility Pole", "Pole", "Fence", "Wall", "Manhole", "Street Light", "Curb",
"Guard Rail", "Caravan", "Junction Box", "Traffic Sign (Front)", "Billboard", "Banner",
"Mailbox", "Traffic Sign (Back)", "Bench", "Fire Hydrant", "Trash Can", "CCTV Camera",
"Traffic Light", "Barrier", "Rail Track", "Phone Booth", "Curb Cut", "Traffic Sign Frame",
"Bike Rack"],
"road": ["Road", "Lane Marking - General", "Sidewalk", "Bridge", "Other Vehicle", "Motorcyclist", "Pothole",
"Catch Basin", "Car Mount", "Tunnel", "Parking", "Service Lane", "Lane Marking - Crosswalk",
"Pedestrian Area", "On Rails", "Bike Lane", "Crosswalk - Plain"],
"little-objects": ["Car", "Person", "Truck", "Boat", "Wheeled Slow", "Trailer", "Ground Animal", "Bicycle",
"Motorcycle", "Bird", "Bus", "Ego Vehicle", "Bicyclist", "Other Rider"],
"water": ["Water"],
"sky": ["Sky"],
"hill": ["Mountain"]
}
self.color_map = color_map_8classes
self.original_classes = mapillary_classes
self.classes = list(self.mapping.keys())
self.n_classes = len(self.classes)
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
x_argmax = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy()
new_images = np.zeros((*x_argmax.shape, 3), dtype=np.uint8)
for i in range(self.n_classes):
new_images[x_argmax == i] = self.color_map[i]
return new_images
def _merge_fn(self, dep_data: list[np.ndarray]) -> tr.Tensor:
m2f_mapillary = dep_data[0].argmax(-1).numpy()
m2f_mapillary_converted = semantic_mapper(m2f_mapillary, self.mapping, self.original_classes)
converted_oh = F.one_hot(tr.from_numpy(m2f_mapillary_converted).long(), num_classes=self.n_classes).float()
return converted_oh
_tasks: list[NpzRepresentation] = [ # some pre-baked representations
rgb := RGBRepresentation("rgb"),
HSVRepresentation("hsv", dependencies=[rgb]),
EdgesRepresentation("edges_dexined"),
EdgesRepresentation("edges_gb"),
DepthRepresentation("depth_dpt", min_depth=0, max_depth=0.999),
DepthRepresentation("depth_sfm_manual202204", min_depth=0, max_depth=300),
DepthRepresentation("depth_ufo", min_depth=0, max_depth=1),
DepthRepresentation("depth_marigold", min_depth=0, max_depth=1),
NormalsRepresentation("normals_sfm_manual202204"),
OpticalFlowRepresentation("opticalflow_rife"),
SemanticRepresentation("semantic_segprop8", classes=8, color_map=color_map_8classes),
SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes, color_map=coco_color_map),
m2f_mapillary := SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
color_map=mapillary_color_map),
SemanticMask2FormerMapillaryConvertedPaper(m2f_mapillary),
NpzRepresentation("softseg_gb", 3),
]
dronescapes_task_types: dict[str, NpzRepresentation] = {task.name: task for task in _tasks}
|