File size: 13,107 Bytes
92142d8 630cdf5 f5a8641 92142d8 630cdf5 92142d8 293440d 92142d8 61fd3f3 92142d8 61fd3f3 cbb2b8a 92142d8 d566054 cbb2b8a 1ab474b 92142d8 fff26c3 d566054 92142d8 d566054 92142d8 1ab474b 92142d8 61740cb f5a8641 61fd3f3 f5a8641 61740cb 120d732 92142d8 1ab474b 92142d8 1ab474b 92142d8 293440d 92142d8 1ab474b 92142d8 89b2653 92142d8 1ab474b fff26c3 89b2653 92142d8 1ab474b 92142d8 89b2653 92142d8 1ab474b fff26c3 89b2653 92142d8 1ab474b 92142d8 89b2653 92142d8 89b2653 92142d8 1ab474b 92142d8 1ab474b 92142d8 c5302ea 92142d8 c5302ea 92142d8 1ab474b 92142d8 1ab474b 92142d8 1ab474b 92142d8 dd19171 92142d8 dd19171 92142d8 dd19171 92142d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
#!/usr/bin/env python3
"""MultiTask Dataset module compatible with torch.utils.data.Dataset & DataLoader."""
from __future__ import annotations
from pathlib import Path
from typing import Dict, List, Tuple
from argparse import ArgumentParser
from pprint import pprint
from natsort import natsorted
from loguru import logger
import torch as tr
import numpy as np
from torch.utils.data import Dataset, DataLoader
from lovely_tensors import monkey_patch
monkey_patch()
BuildDatasetTuple = Tuple[Dict[str, List[Path]], List[str]]
MultiTaskItem = Tuple[Dict[str, tr.Tensor], str, List[str]] # [{task: data}, stem(name) | list[stem(name)], [tasks]]
class NpzRepresentation:
"""Generic Task with data read from/saved to npz files. Tries to read data as-is from disk and store it as well"""
def __init__(self, name: str):
self.name = name
def load_from_disk(self, path: Path) -> tr.Tensor:
"""Reads the npz data from the disk and transforms it properly"""
data = np.load(path, allow_pickle=False)
data = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well
return tr.from_numpy(data) # can be uint8, float16, float32 etc.
def save_to_disk(self, data: tr.Tensor, path: Path):
"""stores this item to the disk which can then be loaded via `load_from_disk`"""
np.save(path, data.cpu().detach().numpy(), allow_pickle=False)
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
"""very basic implementation of converting this representation to a viewable image. You should overwrite this"""
assert isinstance(x, tr.Tensor), type(x)
if len(x.shape) == 2: x = x.unsqueeze(-1)
assert len(x.shape) == 3, x.shape # guaranteed to be (H, W, C) at this point
if x.shape[-1] != 3: x = x[..., 0:1]
if x.shape[-1] == 1: x = x.repeat(1, 1, 3)
x = x.nan_to_num(0).cpu().detach().numpy() # guaranteed to be (H, W, 3) at this point hopefully
_min, _max = x.min((0, 1), keepdims=True), x.max((0, 1), keepdims=True)
if x.dtype != np.uint8: x = np.nan_to_num((x - _min) / (_max - _min) * 255, 0).astype(np.uint8)
return x
def __repr__(self):
return str(self)
def __str__(self):
return f"{str(type(self)).split('.')[-1][0:-2]}({self.name})"
class MultiTaskDataset(Dataset):
"""
MultiTaskDataset implementation. Reads data from npz files and returns them as a dict.
Parameters:
- path: Path to the directory containing the npz files.
- task_names: List of tasks that are present in the dataset. If set to None, will infer from the files on disk.
- handle_missing_data: Modes to handle missing data. Valid options are:
- drop: Drop the data point if any of the representations is missing.
- fill_none: Fill the missing data with Nones.
Expected directory structure:
path/
- task_1/0.npz, ..., N.npz
- ...
- task_n/0.npz, ..., N.npz
Names can be in a different format (i.e. 2022-01-01.npz), but must be consistent and equal across all tasks.
"""
def __init__(self, path: Path, task_names: list[str] | None = None, handle_missing_data: str = "fill_none",
files_suffix: str = "npz", task_types: dict[str, type] = None):
assert Path(path).exists(), f"Provided path '{path}' doesn't exist!"
assert handle_missing_data in ("drop", "fill_none", "fill_zero", "fill_nan"), \
f"Invalid handle_missing_data mode: {handle_missing_data}"
assert files_suffix == "npz", "Only npz supported right now (though trivial to update)"
self.path = Path(path).absolute()
self.handle_missing_data = handle_missing_data
self.suffix = files_suffix
self.all_files_per_repr = self._get_all_npz_files()
self.files_per_repr, self.file_names = self._build_dataset() # these are filtered by 'drop' or 'fill_none' logic
if task_types is None:
logger.debug("No explicit task types. Defaulting all of them to NpzRepresentation.")
task_types = {}
if task_names is None:
task_names = list(self.files_per_repr.keys())
logger.debug(f"No explicit tasks provided. Using all of them as read from the paths ({len(task_names)}).")
self.task_types = {k: task_types.get(k, NpzRepresentation) for k in task_names}
assert all(isinstance(x, str) for x in task_names), tuple(zip(task_names, (type(x) for x in task_names)))
self.task_names = sorted(task_names)
self._data_shape: tuple[int, ...] | None = None
self._tasks: list[NpzRepresentation] | None = None
self.name_to_task = {task.name: task for task in self.tasks}
logger.info(f"Tasks used in this dataset: {self.task_names}")
_default_val = float("nan") if handle_missing_data == "fill_nan" else 0
self._defaults = {task: None if handle_missing_data == "fill_none" else
tr.full(self.data_shape[task], _default_val) for task in self.task_names}
# Public methods and properties
@property
def data_shape(self) -> dict[str, tuple[int, ...]]:
"""Returns a {task: shape_tuple} for all representations. At least one npz file must exist for each."""
first_npz = {task: [_v for _v in files if _v is not None][0] for task, files in self.files_per_repr.items()}
data_shape = {task: self.name_to_task[task].load_from_disk(first_npz[task]).shape for task in self.task_names}
return data_shape
@property
def tasks(self) -> list[NpzRepresentation]:
"""
Returns a list of instantiated tasks in the same order as self.task_names. Overwrite this to add
new tasks and semantics (i.e. plot_fn or doing some preprocessing after loading from disk in some tasks.
"""
if self._tasks is not None:
return self._tasks
self._tasks = []
for task_name in self.task_names:
t = self.task_types[task_name]
try:
t = t(task_name) # hack for not isinstance(self.task_types, NpzRepresentation) but callable
except Exception:
pass
self._tasks.append(t)
assert all(t.name == t_n for t, t_n in zip(self._tasks, self.task_names)), (self.task_names, self._tasks)
return self._tasks
def collate_fn(self, items: list[MultiTaskItem]) -> MultiTaskItem:
"""
given a list of items (i.e. from a reader[n:n+k] call), return the item batched on 1st dimension.
Nones (missing data points) are turned into nans as per the data shape of that dim.
"""
assert all(item[2] == self.task_names for item in items), ([item[2] for item in items], self.task_names)
items_name = [item[1] for item in items]
res = {k: tr.zeros(len(items), *self.data_shape[k]).float() for k in self.task_names} # float32 always
for i in range(len(items)):
for k in self.task_names:
res[k][i][:] = items[i][0][k] if items[i][0][k] is not None else float("nan")
return res, items_name, self.task_names
# Private methods
def _get_all_npz_files(self) -> dict[str, list[Path]]:
"""returns a dict of form: {"rgb": ["0.npz", "1.npz", ..., "N.npz"]}"""
in_files = {}
all_repr_dirs: list[str] = [x.name for x in self.path.iterdir() if x.is_dir()]
for repr_dir_name in all_repr_dirs:
dir_name = self.path / repr_dir_name
if all(f.is_dir() for f in dir_name.iterdir()): # dataset is stored as repr/part_x/0.npz, ..., part_k/n.npz
all_files = []
for part in dir_name.iterdir():
all_files.extend(part.glob(f"*.{self.suffix}"))
else: # dataset is stored as repr/0.npz, ..., repr/n.npz
all_files = dir_name.glob(f"*.{self.suffix}")
in_files[repr_dir_name] = natsorted(all_files, key=lambda x: x.name) # important: use natsorted() here
assert not any(len(x) == 0 for x in in_files.values()), f"{ [k for k, v in in_files.items() if len(v) == 0] }"
return in_files
def _build_dataset_drop_missing(self) -> BuildDatasetTuple:
in_files = self.all_files_per_repr
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()} # {node: {name: path}}
common = set(x.name for x in next(iter(in_files.values())))
for node in (nodes := in_files.keys()):
common = common.intersection([f.name for f in in_files[node]])
assert len(common) > 0, f"Node '{node}' made the intersection null"
common = natsorted(list(common))
logger.info(f"Found {len(common)} data points for each node ({len(nodes)} nodes).")
files_per_repr = {node: [name_to_node_path[node][x] for x in common] for node in nodes}
assert len(files_per_repr) > 0
return files_per_repr, common
def _build_dataset_fill_missing(self) -> BuildDatasetTuple:
in_files = self.all_files_per_repr
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()}
all_files = set(x.name for x in next(iter(in_files.values())))
nodes = in_files.keys()
for node in (nodes := in_files.keys()):
all_files = all_files.union([f.name for f in in_files[node]])
all_files = natsorted(list(all_files))
logger.info(f"Found {len(all_files)} data points as union of all nodes' data ({len(nodes)} nodes).")
files_per_repr = {node: [] for node in nodes}
for node in nodes:
for file_name in all_files:
file_path = name_to_node_path[node].get(file_name, None)
files_per_repr[node].append(file_path)
assert len(files_per_repr) > 0
return files_per_repr, all_files
def _build_dataset(self) -> BuildDatasetTuple:
logger.debug(f"Building dataset from: '{self.path}'")
if self.handle_missing_data == "drop":
return self._build_dataset_drop_missing()
else:
return self._build_dataset_fill_missing()
# Python magic methods (pretty printing the reader object, reader[0], len(reader) etc.)
def __getitem__(self, index: int | slice | list[int] | tuple) -> MultiTaskItem:
"""Read the data all the desired nodes"""
assert isinstance(index, (int, slice, list, tuple, str)), type(index)
if isinstance(index, slice):
assert index.start is not None and index.stop is not None and index.step is None, "Only reader[l:r] allowed"
index = list(range(index.stop)[index])
if isinstance(index, (list, tuple)):
return self.collate_fn([self.__getitem__(ix) for ix in index])
if isinstance(index, str):
return self.__getitem__(self.file_names.index(index))
res = {}
item_name = self.file_names[index]
for task in self.tasks:
file_path = self.files_per_repr[task.name][index]
file_path = None if file_path is None or not (fpr := file_path.resolve()).exists() else fpr
res[task.name] = task.load_from_disk(file_path) if file_path is not None else self._defaults[task.name]
return (res, item_name, self.task_names)
def __len__(self) -> int:
return len(self.files_per_repr[self.task_names[0]]) # all of them have the same number (filled with None or not)
def __str__(self):
f_str = f"[{str(type(self)).rsplit('.', maxsplit=1)[-1][0:-2]}]"
f_str += f"\n - Path: '{self.path}'"
f_str += f"\n - Tasks ({len(self.tasks)}): {self.tasks}"
f_str += f"\n - Length: {len(self)}"
f_str += f"\n - Handle missing data mode: '{self.handle_missing_data}'"
return f_str
def __repr__(self):
return str(self)
def main():
"""main fn"""
parser = ArgumentParser()
parser.add_argument("dataset_path", type=Path)
parser.add_argument("--handle_missing_data", choices=("drop", "fill_none"), default="fill_none")
args = parser.parse_args()
reader = MultiTaskDataset(args.dataset_path, task_names=None, handle_missing_data=args.handle_missing_data)
print(reader)
print(f"Shape: {reader.data_shape}")
rand_ix = np.random.randint(len(reader))
data, name, repr_names = reader[rand_ix] # get a random single data point
print(f"Name: {name}. Nodes: {repr_names}")
pprint({k: v for k, v in data.items()})
data, name, repr_names = reader[rand_ix: min(len(reader), rand_ix + 5)] # get a random batch
print(f"Name: {name}. Nodes: {repr_names}")
pprint({k: v for k, v in data.items()}) # Nones are converted to 0s automagically
loader = DataLoader(reader, collate_fn=reader.collate_fn, batch_size=5, shuffle=True)
data, name, repr_names = next(iter(loader)) # get a random batch using torch DataLoader
print(f"Name: {name}. Nodes: {repr_names}")
pprint({k: v for k, v in data.items()}) # Nones are converted to 0s automagically
if __name__ == "__main__":
main()
|