File size: 14,938 Bytes
92142d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c544e
92142d8
 
 
69c544e
92142d8
69c544e
92142d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c544e
 
92142d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c544e
92142d8
 
69c544e
 
 
92142d8
69c544e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92142d8
 
cbb2b8a
69c544e
92142d8
cbb2b8a
 
 
 
 
 
 
 
 
92142d8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Dronescapes dataset

![Logo](logo.png)

As introduced in our ICCV 2023 workshop paper: [link](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf)

# 1. Downloading the data

## Option 1. Download the pre-processed dataset from HuggingFace repository

TODO: recommended

<details>
<summary> <b> Option 2. Generating the dataset from raw videos and basic labels </b>.</summary>

Recommended if you intend on understanding how the dataset was created or add new videos or representations.

### 1.2.1 Raw videos

Follow the commands in each directory under `raw_data/videos/*/commands.txt` if you want to start from the 4K videos.

If you only want the 540p videos as used in the paper, they are already provided in the `raw_data/videos/*` directories.

### 1.2.2 Semantic segmentation labels (human annotated)

These were human annotated and then propagated using [segprop](https://github.com/vlicaret/segprop).

```bash
cd raw_data/
tar -xzvf segprop_npz_540.tar.gz
```

### 1.2.3 Generate the rest of the representations

We use the [video-representations-extractor](https://gitlab.com/meehai/video-representations-extractor) to generate
the rest of the labels using pre-traing networks or algoritms.

```
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre raw_data/videos/atanasie_DJI_0652_full/atanasie_DJI_0652_full_540p.mp4 -o raw_data/npz_540p/atanasie_DJI_0652_full/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre raw_data/videos/barsana_DJI_0500_0501_combined_sliced_2700_14700/barsana_DJI_0500_0501_combined_sliced_2700_14700_540p.mp4 -o raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=2 vre raw_data/videos/comana_DJI_0881_full/comana_DJI_0881_full_540p.mp4 -o raw_data/npz_540p/comana_DJI_0881_full/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=3 vre raw_data/videos/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110_540p.mp4 -o raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=4 vre raw_data/videos/herculane_DJI_0021_full/herculane_DJI_0021_full_540p.mp4 -o raw_data/npz_540p/herculane_DJI_0021_full/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=5 vre raw_data/videos/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715_540p.mp4 -o raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=6 vre raw_data/videos/norway_210821_DJI_0015_full/norway_210821_DJI_0015_full_540p.mp4 -o raw_data/npz_540p/norway_210821_DJI_0015_full/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=7 vre raw_data/videos/olanesti_DJI_0416_full/olanesti_DJI_0416_full_540p.mp4 -o raw_data/npz_540p/olanesti_DJI_0416_full/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre raw_data/videos/petrova_DJI_0525_0526_combined_sliced_2850_11850/petrova_DJI_0525_0526_combined_sliced_2850_11850_540p.mp4 -o raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre raw_data/videos/slanic_DJI_0956_0957_combined_sliced_780_9780/slanic_DJI_0956_0957_combined_sliced_780_9780_540p.mp4 -o raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/ --cfg_path cfg.yaml --batch_size 3 --output_dir_exist_mode overwrite --representations rgb "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary"
```

### 1.2.4 Convert Mask2Former from Mapillary classes to segprop8 classes

TODO

### 1.2.5 Check counts for consistency

Run: `bash count_npz.sh raw_data/npz_540p`. At this point it should return:
| scene     |   rgb |   depth_dpt |   depth_sfm_manual20.. |   edges_dexined |   normals_sfm_manual.. |   opticalflow_rife |   semantic_mask2form.. |   semantic_segprop8 |
|:----------|------:|------------:|-----------------------:|----------------:|-----------------------:|-------------------:|-----------------------:|--------------------:|
| atanasie  |  9021 |        9021 |                   9020 |            9021 |                   9020 |               9021 |                   9021 |                9001 |
| barsana   | 12001 |       12001 |                  12001 |           12001 |                  12001 |              12000 |                  12001 |                1573 |
| comana    |  9022 |        9022 |                      0 |            9022 |                      0 |               9022 |                   9022 |                1210 |
| gradistei |  9601 |        9601 |                   9600 |            9601 |                   9600 |               9600 |                   9601 |                1210 |
| herculane |  9022 |        9022 |                   9021 |            9022 |                   9021 |               9022 |                   9022 |                1210 |
| jupiter   | 11066 |       11066 |                  11065 |           11066 |                  11065 |              11066 |                  11066 |                1452 |
| norway    |  2983 |        2983 |                      0 |            2983 |                      0 |               2983 |                   2983 |                2941 |
| olanesti  |  9022 |        9022 |                   9021 |            9022 |                   9021 |               9022 |                   9022 |                1210 |
| petrova   |  9001 |        9001 |                   9001 |            9001 |                   9001 |               9000 |                   9001 |                1210 |
| slanic    |  9001 |        9001 |                   9001 |            9001 |                   9001 |               9000 |                   9001 |                9001 |

### 1.2.6. Split intro train, validation, semisupervised and train

We include 8 splits: 4 using only GT annotated semantic data and 4 using all available data (i.e. segproped between
annotated data). The indexes are taken from `txt_files/*`, i.e. `txt_files/manually_adnotated_files/test_files_116.txt`
refers to the fact that the (unseen at train time) test set (norway + petrova + barsana) contains 116 manually
annotated semantic files. We include all representations from above, not just semantic for all possible splits.
Adding new representations is as simple as running VRE on the 540p mp4 file

```
./symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/train_files_11664.txt -o data/train_set --overwrite
./symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/val_files_605.txt -o data/validation_set --overwrite
./symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/semisup_files_11299.txt -o data/semisupervised_set --overwrite
./symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/test_files_5603.txt -o data/test_set --overwrite
./symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/train_files_218.txt -o data/train_set_annotated_only --overwrite
./symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/val_files_15.txt -o data/validation_set_annotated_only --overwrite
./symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/semisup_files_207.txt -o data/semisupervised_set_annotated_nly --overwrite
./symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/test_files_116.txt -o data/test_set_annotated_nly --overwrite
```

Note: `add --copy_files` if you want to make copies instead of using symlinks.

Upon calling this, you should be able to see something like this:
```
user> ls data/*
data/semisupervised_set:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/semisupervised_set_annotated_nly:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/test_set:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/test_set_annotated_nly:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/train_set:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/train_set_annotated_only:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/validation_set:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8

data/validation_set_annotated_only:
depth_dpt               edges_dexined             opticalflow_rife  semantic_mask2former_swin_mapillary_converted
depth_sfm_manual202204  normals_sfm_manual202204  rgb               semantic_segprop8
```

</details>

## 2. Using the data

As per the split from the paper:
![Split](split.png)

The data is in `data/*` (see the `ls` call above, it should match even if you download from huggingface).

## 2.1 Using the provided viewer
Basic usage:
```
./dronescapes_viewer.py data/test_set_annotated_only/ # or any of the 8 directories
```

<details>
<summary> Expected output </summary>

```
[MultiTaskDataset]
 - Path: '/scratch/sdc/datasets/dronescapes/data/test_set_annotated_only'
 - Only full data: False
 - Representations (8): [NpzRepresentation(depth_dpt), NpzRepresentation(depth_sfm_manual202204), NpzRepresentation(edges_dexined), NpzRepresentation(normals_sfm_manual202204), NpzRepresentation(opticalflow_rife), NpzRepresentation(rgb), NpzRepresentation(semantic_mask2former_swin_mapillary_converted), NpzRepresentation(semantic_segprop8)]
 - Length: 116
== Shapes ==
{'depth_dpt': torch.Size([540, 960]),
 'depth_sfm_manual202204': torch.Size([540, 960]),
 'edges_dexined': torch.Size([540, 960]),
 'normals_sfm_manual202204': torch.Size([540, 960, 3]),
 'opticalflow_rife': torch.Size([540, 960, 2]),
 'rgb': torch.Size([540, 960, 3]),
 'semantic_mask2former_swin_mapillary_converted': torch.Size([540, 960]),
 'semantic_segprop8': torch.Size([540, 960])}
== Random loaded item ==
/export/home/proiecte/aux/mihai_cristian.pirvu/.conda/envs/ngc/lib/python3.10/site-packages/numpy/core/_methods.py:215: RuntimeWarning: overflow encountered in reduce
  arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
{'depth_dpt': tensor[540, 960] x∈[0.031, 1.000] μ=0.060 σ=0.038,
 'depth_sfm_manual202204': tensor[540, 960] f16 x∈[0., 1.195e+03] μ=360.250 σ=inf,
 'edges_dexined': tensor[540, 960] x∈[0.131, 1.000] μ=0.848 σ=0.188,
 'normals_sfm_manual202204': tensor[540, 960, 3] f16 x∈[0.000, 1.000] μ=0.525 σ=inf,
 'opticalflow_rife': tensor[540, 960, 2] f16 x∈[-0.000, 0.007] μ=0.002 σ=0.002,
 'rgb': tensor[540, 960, 3] u8 x∈[0, 255] μ=68.154 σ=33.902,
 'semantic_mask2former_swin_mapillary_converted': tensor[540, 960] u8 x∈[0, 7] μ=3.591 σ=3.058,
 'semantic_segprop8': tensor[540, 960] u8 x∈[0, 6] μ=1.057 σ=0.916}
== Random loaded batch ==
{'depth_dpt': torch.Size([5, 540, 960]),
 'depth_sfm_manual202204': torch.Size([5, 540, 960]),
 'edges_dexined': torch.Size([5, 540, 960]),
 'normals_sfm_manual202204': torch.Size([5, 540, 960, 3]),
 'opticalflow_rife': torch.Size([5, 540, 960, 2]),
 'rgb': torch.Size([5, 540, 960, 3]),
 'semantic_mask2former_swin_mapillary_converted': torch.Size([5, 540, 960]),
 'semantic_segprop8': torch.Size([5, 540, 960])}
== Random loaded batch using torch DataLoader ==
{'depth_dpt': torch.Size([5, 540, 960]),
 'depth_sfm_manual202204': torch.Size([5, 540, 960]),
 'edges_dexined': torch.Size([5, 540, 960]),
 'normals_sfm_manual202204': torch.Size([5, 540, 960, 3]),
 'opticalflow_rife': torch.Size([5, 540, 960, 2]),
 'rgb': torch.Size([5, 540, 960, 3]),
 'semantic_mask2former_swin_mapillary_converted': torch.Size([5, 540, 960]),
 'semantic_segprop8': torch.Size([5, 540, 960])}
```

</details>

## TODOs
- Fix remaining bad npz files
```
/scratch/sdc/datasets/dronescapes/data/semisupervised_set/depth_dpt/part0/herculane_DJI_0021_full_3565.npz
/scratch/sdc/datasets/dronescapes/data/semisupervised_set/depth_dpt/part0/herculane_DJI_0021_full_3570.npz
/scratch/sdc/datasets/dronescapes/data/semisupervised_set/depth_dpt/part0/herculane_DJI_0021_full_3582.npz
/scratch/sdc/datasets/dronescapes/data/semisupervised_set/depth_dpt/part0/herculane_DJI_0021_full_3592.npz
```

- convert camera normals to world normals
- mask2former convert
- add raw script for reading data
  - add semantics for each representation in a DronescapesReader
- add notebook for visualisation