dronescapes / dronescapes_reader /dronescapes_representations.py
Meehai's picture
one more fix
61fd3f3
raw
history blame
2.33 kB
"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks"""
from pathlib import Path
import numpy as np
import torch as tr
import flow_vis
from overrides import overrides
from matplotlib.cm import hot # pylint: disable=no-name-in-module
from .multitask_dataset import NpzRepresentation
class DepthRepresentation(NpzRepresentation):
"""DepthRepresentation. Implements depth task-specific stuff, like hotmap."""
def __init__(self, *args, min_depth: float, max_depth: float, **kwargs):
super().__init__(*args, **kwargs)
self.min_depth = min_depth
self.max_depth = max_depth
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
x = x.detach().cpu().numpy()
x = np.clip(x, self.min_depth, self.max_depth)
x = np.nan_to_num((x - x.min()) / (x.max() - x.min()), 0)
y = hot(x.squeeze())[..., 0:3]
y = np.uint8(y * 255)
return y
class OpticalFlowRepresentation(NpzRepresentation):
"""OpticalFlowRepresentation. Implements depth task-specific stuff, like using flow_vis."""
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
return flow_vis.flow_to_color(x.squeeze().nan_to_num(0).detach().cpu().numpy())
class SemanticRepresentation(NpzRepresentation):
"""SemanticRepresentation. Implements depth task-specific stuff, like using flow_vis."""
def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs):
super().__init__(*args, **kwargs)
self.classes = list(range(classes)) if isinstance(classes, int) else classes
self.n_classes = len(self.classes)
self.color_map = color_map
assert len(color_map) == self.n_classes, (color_map, self.n_classes)
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path)
assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}"
return res
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
x = x.squeeze().nan_to_num(0).detach().cpu().numpy()
new_images = np.zeros((*x.shape, 3), dtype=np.uint8)
for i in range(self.n_classes):
new_images[x == i] = self.color_map[i]
return new_images