dronescapes / scripts /eval_script_old.py
Meehai's picture
fix eval script
304b1ab
raw
history blame
10.3 kB
"""
The old evaluation script.
To run, you first need to split the test scenes data into 3 different directories:
cd /dronescapes/data
scenes=(comana barsana norway);
for scene in ${scenes[@]} ; do
ls test_set_annotated_only | while read task; do
mkdir -p test_set_annotated_only_per_scene/$scene/$task;
ls test_set_annotated_only/$task | grep "$scene" | while read line; do
cp test_set_annotated_only/$task/$line test_set_annotated_only_per_scene/$scene/$task/$line;
done;
done
done
Then run this:
cd /dronescapes/scripts
python eval_script_old.py --gt_path ../data/test_set_annotated_only_per_scene/comana/semantic_segprop8/ --pred_path ../data/test_set_annotated_only_per_scene/comana/semantic_mask2former_swin_mapillary_converted/ --class_weights 0.28172092 0.30589653 0.13341699 0.05937348 0.00474491 0.05987466 0.08660721 0.06836531 --classes land forest residential road little-objects water sky hill -o results/comana --overwrite
python eval_script_old.py --gt_path ../data/test_set_annotated_only_per_scene/barsana/semantic_segprop8/ --pred_path ../data/test_set_annotated_only_per_scene/barsana/semantic_mask2former_swin_mapillary_converted/ --class_weights 0.28172092 0.30589653 0.13341699 0.05937348 0.00474491 0.05987466 0.08660721 0.06836531 --classes land forest residential road little-objects water sky hill -o results/barsana --overwrite
python eval_script_old.py --gt_path ../data/test_set_annotated_only_per_scene/norway/semantic_segprop8/ --pred_path ../data/test_set_annotated_only_per_scene/norway/semantic_mask2former_swin_mapillary_converted/ --class_weights 0.28172092 0.30589653 0.13341699 0.05937348 0.00474491 0.05987466 0.08660721 0.06836531 --classes land forest residential road little-objects water sky hill -o results/norway --overwrite
"""
from __future__ import annotations
import os
import numpy as np
import pandas as pd
from natsort import natsorted
from pathlib import Path
import shutil
import tempfile
from tqdm import tqdm
import argparse
import warnings
warnings.filterwarnings("ignore")
def convert_label2multi(label, class_id):
out = np.zeros((label.shape[0], label.shape[1]), dtype=np.uint8)
data_indices = np.where(np.equal(label, class_id))
out[data_indices[0], data_indices[1]] = 1
return np.array(out, dtype=bool)
def process_all_video_frames(gt_files: list[Path], pred_files: list[Path], class_id: int):
TP, TN, FP, FN = {}, {}, {}, {}
for gt_file, pred_file in tqdm(zip(gt_files, pred_files), total=len(gt_files), desc=f"{class_id=}"):
gt_label_raw = np.load(gt_file, allow_pickle=True)["arr_0"]
net_label_raw = np.load(pred_file, allow_pickle=True)["arr_0"]
gt_label = convert_label2multi(gt_label_raw, class_id)
net_label = convert_label2multi(net_label_raw, class_id)
true_positives = np.count_nonzero(gt_label * net_label)
true_negatives = np.count_nonzero((gt_label + net_label) == 0)
false_positives = np.count_nonzero((np.array(net_label, dtype=int) - np.array(gt_label, dtype=int)) > 0)
false_negatives = np.count_nonzero((np.array(gt_label, dtype=int) - np.array(net_label, dtype=int)) > 0)
TP[gt_file.name] = true_positives
TN[gt_file.name] = true_negatives
FP[gt_file.name] = false_positives
FN[gt_file.name] = false_negatives
df = pd.DataFrame([TP, FP, TN, FN], index=["tp", "fp", "tn", "fn"]).T
global_TP, global_TN, global_FP, global_FN = sum(TP.values()), sum(TN.values()), sum(FP.values()), sum(FN.values())
global_precision = global_TP / (global_TP + global_FP + np.spacing(1))
global_recall = global_TP / (global_TP + global_FN + np.spacing(1))
global_f1_score = (2 * global_precision * global_recall) / (global_precision + global_recall + np.spacing(1))
global_iou = global_TP / (global_TP + global_FP + global_FN + np.spacing(1))
return (global_precision, global_recall, global_f1_score, global_iou)
def join_results(args: argparse.Namespace):
out_path = os.path.join(args.out_dir, 'joined_results_' + str(len(args.classes)) + 'classes.txt')
out_file = open(out_path, 'w')
joined_f1_scores_mean = []
joined_iou_scores_mean = []
for CLASS_ID in range(len(args.classes)):
RESULT_FILE = os.path.join(args.out_dir, 'evaluation_dronescapes_CLASS_' + str(CLASS_ID) + '.txt')
result_file_lines = open(RESULT_FILE, 'r').read().splitlines()
for idx, line in enumerate(result_file_lines):
if idx != 0:
splits = line.split(',')
f1_score = float(splits[2])
iou_score = float(splits[3])
out_file.write('------------------------- ' + ' CLASS ' + str(CLASS_ID) + ' - ' + args.classes[CLASS_ID] + ' --------------------------------------------\n')
# F1Score
out_file.write('F1-Score: ' + str(round(f1_score, 4)) + '\n')
# Mean IOU
out_file.write('IOU: ' + str(round(iou_score, 4)) + '\n')
out_file.write('\n\n')
joined_f1_scores_mean.append(f1_score)
joined_iou_scores_mean.append(iou_score)
out_file.write('\n\n')
out_file.write('Mean F1-Score all classes: ' + str(round(np.mean(joined_f1_scores_mean), 4)) + '\n')
out_file.write('Mean IOU all classes: ' + str(round(np.mean(joined_iou_scores_mean), 4)) + '\n')
out_file.write('\n\n')
out_file.write('\n\n')
out_file.write('Weighted Mean F1-Score all classes: ' + str(round(np.sum(np.dot(joined_f1_scores_mean, args.class_weights)), 4)) + '\n')
out_file.write('Weighted Mean IOU all classes: ' + str(round(np.sum(np.dot(joined_iou_scores_mean, args.class_weights)), 4)) + '\n')
out_file.write('\n\n')
out_file.close()
print(f"Written to '{out_path}'")
def compat_old_txt_file(args: Namespace):
(tempdir := Path(tempfile.TemporaryDirectory().name)).mkdir()
(tempdir / "gt").mkdir()
(tempdir / "pred").mkdir()
print(f"old pattern detected. Copying files to a temp dir: {tempdir}")
test_files = natsorted(open(args.txt_path, "r").read().splitlines())
scenes = natsorted(set(([os.path.dirname(x) for x in test_files])))
assert len(scenes) == 1, scenes
files = natsorted([x for x in test_files if scenes[0] in x])
gt_files = [f"{args.gt_path}/{f.split('/')[0]}/segprop{len(args.classes)}/{f.split('/')[1]}.npz" for f in files]
pred_files = [f"{args.pred_path}/{f.split('/')[0]}/{int(f.split('/')[1]):06}.npz" for f in files]
assert all(Path(x).exists() for x in [*gt_files, *pred_files])
for _file in gt_files:
os.symlink(_file, tempdir / "gt" / Path(_file).name)
for _file in pred_files:
os.symlink(_file, tempdir / "pred" / Path(_file).name)
args.gt_path = tempdir / "gt"
args.pred_path = tempdir / "pred"
args.txt_path = None
def main(args: argparse.Namespace):
gt_files = natsorted([x for x in args.gt_path.iterdir()], key=lambda x: Path(x).name)
pred_files = natsorted([x for x in args.pred_path.iterdir()], key=lambda x: Path(x).name)
assert all(Path(x).exists() for x in [*gt_files, *pred_files])
global_precision, global_recall, global_f1, global_iou = process_all_video_frames(gt_files, pred_files, args.class_id)
out_path = os.path.join(args.out_dir, 'evaluation_dronescapes_CLASS_' + str(args.class_id) + '.txt')
out_file = open(out_path, 'w')
out_file.write('precision,recall,f1,iou\n')
out_file.write('{0:.6f},{1:.6f},{2:.6f},{3:.6f}\n'.format(global_precision, global_recall, global_f1, global_iou))
out_file.close()
print(f"Written to '{out_path}'")
if __name__ == "__main__":
"""
Barsana: /Date3/hpc/datasets/dronescapes/all_scenes/dataset_splits/20220517_train_on_even_semisup_on_odd_validate_on_last_odd_triplet_journal_split/only_manually_annotated_test_files_36.txt
Norce: /Date3/hpc/datasets/dronescapes/all_scenes/dataset_splits/20220810_new_norce_clip/only_manually_annotated_test_files_50.txt
Comana: /Date3/hpc/datasets/dronescapes/all_scenes/dataset_splits/20221208_new_comana_clip/only_manually_annotated_test_files_30.txt
gt_path: /Date3/hpc/datasets/dronescapes/all_scenes
pred_path/Date3/hpc/code/Mask2Former/demo_dronescapes/outputs_dronescapes_compatible/mapillary_sseg
NC = 7
CLASS_NAMES = ['land', 'forest', 'residential', 'road', 'little-objects', 'water', 'sky']
CLASS_WEIGHTS = [0.28172092, 0.37426183, 0.13341699, 0.05937348, 0.00474491, 0.05987466, 0.08660721]
NC = 8
CLASS_NAMES = ['land', 'forest', 'residential', 'road', 'little-objects', 'water', 'sky', 'hill']
CLASS_WEIGHTS = [0.28172092, 0.30589653, 0.13341699, 0.05937348, 0.00474491, 0.05987466, 0.08660721, 0.06836531]
NC = 10
CLASS_NAMES = ['land', 'forest', 'low-level', 'road', 'high-level', 'cars', 'water', 'sky', 'hill', 'person']
CLASS_WEIGHTS = [0.28172092, 0.30589653, 0.09954808, 0.05937348, 0.03386891, 0.00445865, 0.05987466, 0.08660721, 0.06836531, 0.00028626]
"""
parser = argparse.ArgumentParser()
parser.add_argument("--gt_path", type=Path, required=True)
parser.add_argument("--pred_path", type=Path, required=True)
parser.add_argument("--out_dir", "-o", required=True, type=Path, default=Path(__file__).parent / "out_dir")
parser.add_argument("--classes", nargs="+")
parser.add_argument("--class_weights", type=float, nargs="+", required=True)
parser.add_argument("--txt_path")
parser.add_argument("--overwrite", action="store_true")
args = parser.parse_args()
if args.classes is None:
print("Class names not provided")
args.classes = list(map(str, range(len(args.class_weights))))
assert len(args.classes) == len(args.class_weights), (args.classes, args.class_weights)
assert len(args.classes) in (7, 8, 10), len(args.classes)
assert not args.out_dir.exists() or args.overwrite, f"'{args.out_dir}' exists. Use --overwrite"
shutil.rmtree(args.out_dir, ignore_errors=True)
os.makedirs(args.out_dir, exist_ok=True)
if args.txt_path is not None:
compat_old_txt_file(args)
for class_id in range(len(args.classes)):
args.class_id = class_id
main(args)
join_results(args)