dronescapes / dronescapes_reader /dronescapes_representations.py
3v324v23's picture
files_per_repr_overwrites and and hsv support. Other backports too (opticalflow/ndims)
f755e76
raw
history blame
4.91 kB
"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks"""
from __future__ import annotations
from pathlib import Path
import numpy as np
import torch as tr
import flow_vis
from skimage.color import rgb2hsv, hsv2rgb
from overrides import overrides
from matplotlib.cm import hot # pylint: disable=no-name-in-module
from .multitask_dataset import NpzRepresentation
from torch.nn import functional as F
class ColorRepresentation(NpzRepresentation):
def __init__(self, name: str, n_channels: int):
super().__init__(name)
self._n_channels = n_channels
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path)
return res.float() / 255
@overrides
def save_to_disk(self, data: tr.Tensor, path: Path):
return super().save_to_disk((data * 255).byte(), path)
@property
@overrides
def n_channels(self) -> int:
return self._n_channels
class HSVRepresentation(ColorRepresentation):
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
rgb = NpzRepresentation.load_from_disk(self, path)
return tr.from_numpy(rgb2hsv(rgb)).float()
@overrides
def save_to_disk(self, data: tr.Tensor, path: Path):
rgb = tr.from_numpy(hsv2rgb(data) * 255).byte()
NpzRepresentation.save_to_disk(rgb, path)
class EdgesRepresentation(NpzRepresentation):
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path).float()
assert len(res.shape) == 3 and res.shape[-1] == 1
return res
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
return (x.detach().repeat(1, 1, 3) * 255).cpu().numpy().astype(np.uint8)
@property
@overrides
def n_channels(self) -> int:
return 1
class DepthRepresentation(NpzRepresentation):
"""DepthRepresentation. Implements depth task-specific stuff, like hotmap."""
def __init__(self, *args, min_depth: float, max_depth: float, **kwargs):
super().__init__(*args, **kwargs)
assert 0 <= min_depth < max_depth, (min_depth, max_depth)
self.min_depth = min_depth
self.max_depth = max_depth
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
x = x.detach().clip(0, 1).squeeze().cpu().numpy()
y: np.ndarray = hot(x)[..., 0:3] * 255
return y.astype(np.uint8)
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path).squeeze().unsqueeze(-1)
res = res.float().clip(self.min_depth, self.max_depth)
res = (res - self.min_depth) / (self.max_depth - self.min_depth)
return res
@property
@overrides
def n_channels(self) -> int:
return 1
class NormalsRepresentation(NpzRepresentation):
@property
@overrides
def n_channels(self) -> int:
return 3
class OpticalFlowRepresentation(NpzRepresentation):
"""OpticalFlowRepresentation. Implements depth task-specific stuff, like using flow_vis."""
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
return flow_vis.flow_to_color(x.squeeze().nan_to_num(0).detach().cpu().numpy())
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
return super().load_from_disk(path).float()
@property
@overrides
def n_channels(self) -> int:
return 2
class SemanticRepresentation(NpzRepresentation):
"""SemanticRepresentation. Implements depth task-specific stuff, like using flow_vis."""
def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs):
super().__init__(*args, **kwargs)
self.classes = list(range(classes)) if isinstance(classes, int) else classes
self.n_classes = len(self.classes)
self.color_map = color_map
assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes)
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path)
if len(res.shape) == 3:
assert res.shape[-1] == self.n_classes, f"Expected {self.n_classes} (HxWxC), got {res.shape[-1]}"
res = res.argmax(-1)
assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}"
res = F.one_hot(res.long(), num_classes=self.n_classes).float()
return res
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
x = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy()
new_images = np.zeros((*x.shape, 3), dtype=np.uint8)
for i in range(self.n_classes):
new_images[x == i] = self.color_map[i]
return new_images
@property
@overrides
def n_channels(self) -> int:
return self.n_classes