evaluate semantic segmentation script
Browse files- .gitignore +1 -0
- README.md +57 -1
- scripts/convert_m2f_to_dronescapes.py +0 -0
- scripts/evaluate_semantic_segmentation.py +105 -0
.gitignore
CHANGED
@@ -13,4 +13,5 @@ error.txt
|
|
13 |
sanity_check.py
|
14 |
commands.txt
|
15 |
raw_data/npz_540p_2/
|
|
|
16 |
|
|
|
13 |
sanity_check.py
|
14 |
commands.txt
|
15 |
raw_data/npz_540p_2/
|
16 |
+
here.csv
|
17 |
|
README.md
CHANGED
@@ -211,9 +211,65 @@ python scripts/dronescapes_viewer.py data/test_set_annotated_only/ # or any of t
|
|
211 |
'semantic_mask2former_swin_mapillary_converted': torch.Size([5, 540, 960]),
|
212 |
'semantic_segprop8': torch.Size([5, 540, 960])}
|
213 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
|
|
|
|
|
|
|
|
|
|
215 |
</details>
|
216 |
|
217 |
## TODOs
|
218 |
- convert camera normals to world normals
|
219 |
-
- evaluation script for sseg
|
|
|
211 |
'semantic_mask2former_swin_mapillary_converted': torch.Size([5, 540, 960]),
|
212 |
'semantic_segprop8': torch.Size([5, 540, 960])}
|
213 |
```
|
214 |
+
</details>
|
215 |
+
|
216 |
+
## 3. Evaluation for semantic segmentation
|
217 |
+
|
218 |
+
We evaluate in the paper on the 3 test scenes (unsees at train) as well as the semi-supervised scenes (seen, but
|
219 |
+
different split) against the human annotated frames. The general evaluation script is in
|
220 |
+
`scripts/evaluate_semantic_segmentation.py`.
|
221 |
+
|
222 |
+
General usage is:
|
223 |
+
```
|
224 |
+
python scripts/evaluate_semantic_segmentation.py y_dir gt_dir -o results.csv --classes C1 C2 .. Cn
|
225 |
+
[--class_weights W1 W2 ... Wn] [--scenes s1 s2 ... sm]
|
226 |
+
```
|
227 |
+
|
228 |
+
<details>
|
229 |
+
<summary> Script explanation </summary>
|
230 |
+
The script is a bit convoluted, so let's break it into parts:
|
231 |
+
|
232 |
+
- `y_dir` and `gt_dir` Two directories of .npz files in the same format as the dataset (y_dir/1.npz, gt_dir/55.npz etc.)
|
233 |
+
- `classes` A list of classes in the order that they appear in the predictions and gt files
|
234 |
+
- `class_weights` (optional, but used in paper) How much to weigh each class. In the paper we compute these weights as
|
235 |
+
the number of pixels in all the dataset (train/val/semisup/test) for each of the 8 classes resulting in the numbers
|
236 |
+
below.
|
237 |
+
- `scenes` if the `y_dir` and `gt_dir` contains multiple scenes that you want to evaluate separately, the script allows
|
238 |
+
you to pass the prefix of all the scenes. For example, in `data/test_set_annotated_only/semantic_segprop8/` there are
|
239 |
+
actually 3 scenes in the npz files and in the paper, we evaluate each scene independently. Even though the script
|
240 |
+
outputs one csv file with predictions for each npz file, the scenes are used for proper aggregation at scene level.
|
241 |
+
</details>
|
242 |
+
|
243 |
+
<details>
|
244 |
+
<summary> Reproducing paper results for Mask2Former </summary>
|
245 |
+
|
246 |
+
```
|
247 |
+
python scripts/evaluate_semantic_segmentation.py \
|
248 |
+
data/test_set_annotated_only/semantic_mask2former_swin_mapillary_converted/ \ # change this with your predictions dir
|
249 |
+
data/test_set_annotated_only/semantic_segprop8/ \
|
250 |
+
-o results.csv \
|
251 |
+
--classes land forest residential road little-objects water sky hill \
|
252 |
+
--class_weights 0.28172092 0.30589653 0.13341699 0.05937348 0.00474491 0.05987466 0.08660721 0.06836531 \
|
253 |
+
--scenes barsana_DJI_0500_0501_combined_sliced_2700_14700 comana_DJI_0881_full norway_210821_DJI_0015_full
|
254 |
+
```
|
255 |
+
|
256 |
+
Should output:
|
257 |
+
```
|
258 |
+
scene iou f1
|
259 |
+
barsana_DJI_0500_0501_combined_sliced_2700_14700 63.367 75.327
|
260 |
+
comana_DJI_0881_full 60.554 73.757
|
261 |
+
norway_210821_DJI_0015_full 37.998 45.928
|
262 |
+
overall avg 53.973 65.004
|
263 |
+
```
|
264 |
+
|
265 |
+
Not providing `--scenes` will make an average across all 3 scenes (not average after each metric individually):
|
266 |
|
267 |
+
```
|
268 |
+
iou f1
|
269 |
+
scene
|
270 |
+
all 60.456 73.261
|
271 |
+
```
|
272 |
</details>
|
273 |
|
274 |
## TODOs
|
275 |
- convert camera normals to world normals
|
|
scripts/convert_m2f_to_dronescapes.py
CHANGED
File without changes
|
scripts/evaluate_semantic_segmentation.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Evaluation script for semantic segmentation for dronescapes. Outputs F1Score and mIoU for the 8 classes and each frame.
|
3 |
+
Usage: ./evaluate_semantic_segmentation.py y_dir gt_dir -o results.csv
|
4 |
+
"""
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
from loguru import logger
|
8 |
+
from pathlib import Path
|
9 |
+
from argparse import ArgumentParser, Namespace
|
10 |
+
from tempfile import TemporaryDirectory
|
11 |
+
from functools import partial
|
12 |
+
from torchmetrics.functional.classification import multiclass_stat_scores
|
13 |
+
from tqdm import trange
|
14 |
+
import torch as tr
|
15 |
+
import numpy as np
|
16 |
+
import pandas as pd
|
17 |
+
|
18 |
+
sys.path.append(Path(__file__).parents[1].__str__())
|
19 |
+
from dronescapes_reader import MultiTaskDataset, SemanticRepresentation
|
20 |
+
|
21 |
+
def compute_metrics(tp: np.ndarray, fp: np.ndarray, tn: np.ndarray, fn: np.ndarray) -> pd.DataFrame:
|
22 |
+
precision = tp / (tp + fp)
|
23 |
+
recall = tp / (tp + fn)
|
24 |
+
f1 = 2 * precision * recall / (precision + recall)
|
25 |
+
iou = tp / (tp + fp + fn)
|
26 |
+
return pd.DataFrame([precision, recall, f1, iou], index=["precision", "recall", "f1", "iou"]).T
|
27 |
+
|
28 |
+
def do_one_class(df: pd.DataFrame, class_name: str) -> pd.DataFrame:
|
29 |
+
df = df.query("class_name == @class_name").drop(columns="class_name")
|
30 |
+
df.loc["all"] = df.sum()
|
31 |
+
df[["precision", "recall", "f1", "iou"]] = compute_metrics(df["tp"], df["fp"], df["tn"], df["fn"])
|
32 |
+
df.insert(0, "class_name", class_name)
|
33 |
+
df = df.fillna(0).round(3)
|
34 |
+
return df
|
35 |
+
|
36 |
+
def compute_raw_stats_per_class(reader: MultiTaskDataset, classes: list[str]) -> pd.DataFrame:
|
37 |
+
res = tr.zeros((len(reader), 8, 4)).long() # (N, 8, 4)
|
38 |
+
index = []
|
39 |
+
for i in trange(len(reader)):
|
40 |
+
x = reader[i]
|
41 |
+
y, gt = x[0]["pred"], x[0]["gt"]
|
42 |
+
res[i] = multiclass_stat_scores(y, gt, num_classes=len(classes), average=None)[:, 0:4]
|
43 |
+
index.append(x[1])
|
44 |
+
res = res.reshape(len(reader) * len(classes), 4)
|
45 |
+
df = pd.DataFrame(res, index=np.repeat(index, len(classes)), columns=["tp", "fp", "tn", "fn"])
|
46 |
+
df.insert(0, "class_name", np.array(classes)[:, None].repeat(len(index), 1).T.flatten())
|
47 |
+
return df
|
48 |
+
|
49 |
+
def compute_final_per_scene(res: pd.DataFrame, scene: str, classes: list[str],
|
50 |
+
class_weights: list[float]) -> tuple[float, float]:
|
51 |
+
df = res.iloc[[x.startswith(scene) for x in res.index]]
|
52 |
+
# aggregate for this class all the individual predictions
|
53 |
+
df_scene = df[["class_name", "tp", "fp", "tn", "fn"]].groupby("class_name") \
|
54 |
+
.apply(lambda x: x.sum(), include_groups=False).loc[classes]
|
55 |
+
df_metrics = compute_metrics(df_scene["tp"], df_scene["fp"], df_scene["tn"], df_scene["fn"])
|
56 |
+
iou_weighted = (df_metrics["iou"] * class_weights).sum()
|
57 |
+
f1_weighted = (df_metrics["f1"] * class_weights).sum()
|
58 |
+
return scene, iou_weighted, f1_weighted
|
59 |
+
|
60 |
+
def get_args() -> Namespace:
|
61 |
+
parser = ArgumentParser()
|
62 |
+
parser.add_argument("y_dir", type=lambda p: Path(p).absolute())
|
63 |
+
parser.add_argument("gt_dir", type=lambda p: Path(p).absolute())
|
64 |
+
parser.add_argument("--output_path", "-o", type=Path, required=True)
|
65 |
+
parser.add_argument("--classes", required=True, nargs="+")
|
66 |
+
parser.add_argument("--class_weights", nargs="+", type=float)
|
67 |
+
parser.add_argument("--scenes", nargs="+", default=["all"], help="each scene will get separate metrics if provided")
|
68 |
+
args = parser.parse_args()
|
69 |
+
if args.class_weights is None:
|
70 |
+
args.class_weights = [1 / len(args.classes)] * len(args.classes)
|
71 |
+
assert (a := len(args.class_weights)) == (b := len(args.classes)), (a, b)
|
72 |
+
assert np.fabs(sum(args.class_weights) - 1) < 1e-3, (args.class_weights, sum(args.class_weights))
|
73 |
+
assert args.output_path.suffix == ".csv", f"Prediction file must end in .csv, got: '{args.output_path.suffix}'"
|
74 |
+
if len(args.scenes) > 0:
|
75 |
+
logger.info(f"Scenes: {args.scenes}")
|
76 |
+
return args
|
77 |
+
|
78 |
+
def main(args: Namespace):
|
79 |
+
temp_dir = Path(TemporaryDirectory().name)
|
80 |
+
temp_dir.mkdir(exist_ok=False)
|
81 |
+
os.symlink(args.y_dir, temp_dir / "pred")
|
82 |
+
os.symlink(args.gt_dir, temp_dir / "gt")
|
83 |
+
|
84 |
+
if not args.output_path.exists():
|
85 |
+
sema_repr = partial(SemanticRepresentation, classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
|
86 |
+
reader = MultiTaskDataset(temp_dir, handle_missing_data="drop", task_types={"pred": sema_repr, "gt": sema_repr})
|
87 |
+
df = compute_raw_stats_per_class(reader, args.classes)
|
88 |
+
res = pd.concat([do_one_class(df, class_name) for class_name in args.classes])
|
89 |
+
res.to_csv(args.output_path)
|
90 |
+
logger.info(f"Stored raw metrics file to: '{args.output_path}'")
|
91 |
+
else:
|
92 |
+
logger.info(f"Loading raw metris from: '{args.output_path}'. Delete this file if you want to recompute.")
|
93 |
+
res = pd.read_csv(args.output_path, index_col=0)
|
94 |
+
|
95 |
+
final_agg = []
|
96 |
+
for scene in args.scenes:
|
97 |
+
final_agg.append(compute_final_per_scene(res, scene, classes=args.classes, class_weights=args.class_weights))
|
98 |
+
final_agg = pd.DataFrame(final_agg, columns=["scene", "iou", "f1"]).set_index("scene")
|
99 |
+
if len(args.scenes) > 1:
|
100 |
+
final_agg.loc["mean"] = final_agg.mean()
|
101 |
+
final_agg = (final_agg * 100).round(3)
|
102 |
+
print(final_agg)
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
main(get_args())
|