little update
Browse files
scripts/evaluate_semantic_segmentation.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
"""
|
2 |
Evaluation script for semantic segmentation for dronescapes. Outputs F1Score and mIoU for the 8 classes and each frame.
|
3 |
-
Usage: ./evaluate_semantic_segmentation.py y_dir gt_dir -o results.csv
|
4 |
"""
|
5 |
import sys
|
6 |
import os
|
@@ -84,17 +84,19 @@ def main(args: Namespace):
|
|
84 |
if not args.output_path.exists():
|
85 |
sema_repr = partial(SemanticRepresentation, classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
|
86 |
reader = MultiTaskDataset(temp_dir, handle_missing_data="drop", task_types={"pred": sema_repr, "gt": sema_repr})
|
87 |
-
|
88 |
-
res = pd.concat([do_one_class(df, class_name) for class_name in args.classes])
|
89 |
-
res.to_csv(args.output_path)
|
90 |
logger.info(f"Stored raw metrics file to: '{args.output_path}'")
|
|
|
91 |
else:
|
92 |
-
logger.info(f"Loading raw
|
93 |
-
|
|
|
|
|
94 |
|
95 |
final_agg = []
|
96 |
for scene in args.scenes:
|
97 |
-
final_agg.append(compute_final_per_scene(
|
|
|
98 |
final_agg = pd.DataFrame(final_agg, columns=["scene", "iou", "f1"]).set_index("scene")
|
99 |
if len(args.scenes) > 1:
|
100 |
final_agg.loc["mean"] = final_agg.mean()
|
|
|
1 |
"""
|
2 |
Evaluation script for semantic segmentation for dronescapes. Outputs F1Score and mIoU for the 8 classes and each frame.
|
3 |
+
Usage: ./evaluate_semantic_segmentation.py y_dir gt_dir --classes C1 C2 ... Cn -o results.csv
|
4 |
"""
|
5 |
import sys
|
6 |
import os
|
|
|
84 |
if not args.output_path.exists():
|
85 |
sema_repr = partial(SemanticRepresentation, classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
|
86 |
reader = MultiTaskDataset(temp_dir, handle_missing_data="drop", task_types={"pred": sema_repr, "gt": sema_repr})
|
87 |
+
raw_stats = compute_raw_stats_per_class(reader, args.classes)
|
|
|
|
|
88 |
logger.info(f"Stored raw metrics file to: '{args.output_path}'")
|
89 |
+
raw_stats.to_csv(args.output_path)
|
90 |
else:
|
91 |
+
logger.info(f"Loading raw metrics from: '{args.output_path}'. Delete this file if you want to recompute.")
|
92 |
+
raw_stats = pd.read_csv(args.output_path, index_col=0)
|
93 |
+
|
94 |
+
metrics_per_class = pd.concat([do_one_class(raw_stats, class_name) for class_name in args.classes])
|
95 |
|
96 |
final_agg = []
|
97 |
for scene in args.scenes:
|
98 |
+
final_agg.append(compute_final_per_scene(metrics_per_class, scene, classes=args.classes,
|
99 |
+
class_weights=args.class_weights))
|
100 |
final_agg = pd.DataFrame(final_agg, columns=["scene", "iou", "f1"]).set_index("scene")
|
101 |
if len(args.scenes) > 1:
|
102 |
final_agg.loc["mean"] = final_agg.mean()
|