"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks""" from __future__ import annotations from pathlib import Path import numpy as np import torch as tr import flow_vis from overrides import overrides from matplotlib.cm import hot # pylint: disable=no-name-in-module from .multitask_dataset import NpzRepresentation from torch.nn import functional as F class ColorRepresentation(NpzRepresentation): def load_from_disk(self, path: Path) -> tr.Tensor: res = super().load_from_disk(path) return res.float() / 255 def save_to_disk(self, data: tr.Tensor, path: Path): return super().save_to_disk((data * 255).byte(), path) class EdgesRepresentation(NpzRepresentation): def load_from_disk(self, path: Path) -> tr.Tensor: res = super().load_from_disk(path).float() assert len(res.shape) == 3 and res.shape[-1] == 1 return res def plot_fn(self, x: tr.Tensor) -> np.ndarray: return (x.repeat(1, 1, 3) * 255).cpu().numpy().astype(np.uint8) class DepthRepresentation(NpzRepresentation): """DepthRepresentation. Implements depth task-specific stuff, like hotmap.""" def __init__(self, *args, min_depth: float, max_depth: float, **kwargs): super().__init__(*args, **kwargs) assert 0 <= min_depth < max_depth, (min_depth, max_depth) self.min_depth = min_depth self.max_depth = max_depth @overrides def plot_fn(self, x: tr.Tensor) -> np.ndarray: x = x.detach().clip(0, 1).squeeze().cpu().numpy() y: np.ndarray = hot(x)[..., 0:3] * 255 return y.astype(np.uint8) def load_from_disk(self, path: Path) -> tr.Tensor: res = super().load_from_disk(path) res = res.float().clip(self.min_depth, self.max_depth) res = (res - self.min_depth) / (self.max_depth - self.min_depth) return res class OpticalFlowRepresentation(NpzRepresentation): """OpticalFlowRepresentation. Implements depth task-specific stuff, like using flow_vis.""" @overrides def plot_fn(self, x: tr.Tensor) -> np.ndarray: return flow_vis.flow_to_color(x.squeeze().nan_to_num(0).detach().cpu().numpy()) def load_from_disk(self, path: Path) -> tr.Tensor: res = super().load_from_disk(path).float() return res class SemanticRepresentation(NpzRepresentation): """SemanticRepresentation. Implements depth task-specific stuff, like using flow_vis.""" def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs): super().__init__(*args, **kwargs) self.classes = list(range(classes)) if isinstance(classes, int) else classes self.n_classes = len(self.classes) self.color_map = color_map assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes) @overrides def load_from_disk(self, path: Path) -> tr.Tensor: res = super().load_from_disk(path) assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}" res = F.one_hot(res.long(), num_classes=self.n_classes).float() return res @overrides def plot_fn(self, x: tr.Tensor) -> np.ndarray: x = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy() new_images = np.zeros((*x.shape, 3), dtype=np.uint8) for i in range(self.n_classes): new_images[x == i] = self.color_map[i] return new_images