MichaelR207 commited on
Commit
2ca2b34
1 Parent(s): 2c602f4

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +631 -536
README.md CHANGED
@@ -1,539 +1,634 @@
1
  ---
2
- dataset_info:
3
- - config_name: ASSET
4
- features:
5
- - name: original
6
- dtype: string
7
- - name: simple
8
- sequence:
9
- - name: simplifications
10
- dtype: string
11
- splits:
12
- - name: train
13
- num_bytes: 4293614
14
- num_examples: 19000
15
- - name: validation
16
- num_bytes: 123502
17
- num_examples: 100
18
- - name: test
19
- num_bytes: 411019
20
- num_examples: 359
21
- download_size: 2901550
22
- dataset_size: 4828135
23
- - config_name: AdminIt
24
- features:
25
- - name: original
26
- dtype: string
27
- - name: simple
28
- sequence:
29
- - name: simplifications
30
- dtype: string
31
- splits:
32
- - name: train
33
- num_bytes: 287476
34
- num_examples: 588
35
- - name: validation
36
- num_bytes: 31917
37
- num_examples: 48
38
- - name: test
39
- num_bytes: 31142
40
- num_examples: 49
41
- download_size: 144346
42
- dataset_size: 350535
43
- - config_name: CLEAR
44
- features:
45
- - name: original
46
- dtype: string
47
- - name: simple
48
- sequence:
49
- - name: simplifications
50
- dtype: string
51
- splits:
52
- - name: train
53
- num_bytes: 1334806
54
- num_examples: 4196
55
- - name: validation
56
- num_bytes: 95136
57
- num_examples: 294
58
- - name: test
59
- num_bytes: 31618
60
- num_examples: 100
61
- download_size: 878358
62
- dataset_size: 1461560
63
- - config_name: EasyJapanese
64
- features:
65
- - name: original
66
- dtype: string
67
- - name: simple
68
- sequence:
69
- - name: simplifications
70
- dtype: string
71
- splits:
72
- - name: train
73
- num_bytes: 4924255
74
- num_examples: 48000
75
- - name: validation
76
- num_bytes: 102150
77
- num_examples: 1000
78
- - name: test
79
- num_bytes: 101364
80
- num_examples: 999
81
- download_size: 2780309
82
- dataset_size: 5127769
83
- - config_name: EasyJapaneseExtended
84
- features:
85
- - name: original
86
- dtype: string
87
- - name: simple
88
- sequence:
89
- - name: simplifications
90
- dtype: string
91
- splits:
92
- - name: train
93
- num_bytes: 4458335
94
- num_examples: 33269
95
- - name: validation
96
- num_bytes: 139441
97
- num_examples: 1000
98
- - name: test
99
- num_bytes: 51193
100
- num_examples: 100
101
- download_size: 2742625
102
- dataset_size: 4648969
103
- - config_name: GEOLinoTest
104
- features:
105
- - name: original
106
- dtype: string
107
- - name: simple
108
- sequence:
109
- - name: simplifications
110
- dtype: string
111
- splits:
112
- - name: train
113
- num_bytes: 183396
114
- num_examples: 958
115
- - name: validation
116
- num_bytes: 18186
117
- num_examples: 82
118
- - name: test
119
- num_bytes: 20264
120
- num_examples: 81
121
- download_size: 134385
122
- dataset_size: 221846
123
- - config_name: PaCCSS-IT
124
- features:
125
- - name: original
126
- dtype: string
127
- - name: simple
128
- sequence:
129
- - name: simplifications
130
- dtype: string
131
- splits:
132
- - name: train
133
- num_bytes: 5848946
134
- num_examples: 60485
135
- - name: validation
136
- num_bytes: 114014
137
- num_examples: 1061
138
- - name: test
139
- num_bytes: 114519
140
- num_examples: 1061
141
- download_size: 3170611
142
- dataset_size: 6077479
143
- - config_name: PorSimples
144
- features:
145
- - name: original
146
- dtype: string
147
- - name: simple
148
- sequence:
149
- - name: simplifications
150
- dtype: string
151
- splits:
152
- - name: train
153
- num_bytes: 1256127
154
- num_examples: 6290
155
- - name: validation
156
- num_bytes: 119369
157
- num_examples: 420
158
- - name: test
159
- num_bytes: 119016
160
- num_examples: 420
161
- download_size: 929952
162
- dataset_size: 1494512
163
- - config_name: RSSE
164
- features:
165
- - name: original
166
- dtype: string
167
- - name: simple
168
- sequence:
169
- - name: simplifications
170
- dtype: string
171
- splits:
172
- - name: train
173
- num_bytes: 1347033
174
- num_examples: 3065
175
- - name: validation
176
- num_bytes: 81047
177
- num_examples: 85
178
- - name: test
179
- num_bytes: 850824
180
- num_examples: 1000
181
- download_size: 1044715
182
- dataset_size: 2278904
183
- - config_name: RuAdaptEncy
184
- features:
185
- - name: original
186
- dtype: string
187
- - name: simple
188
- sequence:
189
- - name: simplifications
190
- dtype: string
191
- splits:
192
- - name: train
193
- num_bytes: 2423702
194
- num_examples: 7782
195
- - name: validation
196
- num_bytes: 299291
197
- num_examples: 840
198
- - name: test
199
- num_bytes: 296144
200
- num_examples: 839
201
- download_size: 1674369
202
- dataset_size: 3019137
203
- - config_name: RuAdaptFairytales
204
- features:
205
- - name: original
206
- dtype: string
207
- - name: simple
208
- sequence:
209
- - name: simplifications
210
- dtype: string
211
- splits:
212
- - name: train
213
- num_bytes: 71036
214
- num_examples: 248
215
- - name: validation
216
- num_bytes: 7732
217
- num_examples: 31
218
- - name: test
219
- num_bytes: 7408
220
- num_examples: 31
221
- download_size: 53615
222
- dataset_size: 86176
223
- - config_name: RuWikiLarge
224
- features:
225
- - name: original
226
- dtype: string
227
- - name: simple
228
- sequence:
229
- - name: simplifications
230
- dtype: string
231
- splits:
232
- - name: train
233
- num_bytes: 110393409
234
- num_examples: 246978
235
- - name: validation
236
- num_bytes: 325440
237
- num_examples: 678
238
- - name: test
239
- num_bytes: 151831
240
- num_examples: 312
241
- download_size: 62462792
242
- dataset_size: 110870680
243
- - config_name: SimpitikiWiki
244
- features:
245
- - name: original
246
- dtype: string
247
- - name: simple
248
- sequence:
249
- - name: simplifications
250
- dtype: string
251
- splits:
252
- - name: train
253
- num_bytes: 382373
254
- num_examples: 460
255
- - name: validation
256
- num_bytes: 42592
257
- num_examples: 52
258
- - name: test
259
- num_bytes: 47257
260
- num_examples: 51
261
- download_size: 323635
262
- dataset_size: 472222
263
- - config_name: TSSlovene
264
- features:
265
- - name: original
266
- dtype: string
267
- - name: simple
268
- sequence:
269
- - name: simplifications
270
- dtype: string
271
- splits:
272
- - name: train
273
- num_bytes: 133723
274
- num_examples: 749
275
- - name: validation
276
- num_bytes: 16416
277
- num_examples: 94
278
- - name: test
279
- num_bytes: 15912
280
- num_examples: 96
281
- download_size: 122804
282
- dataset_size: 166051
283
- - config_name: Teacher
284
- features:
285
- - name: original
286
- dtype: string
287
- - name: simple
288
- sequence:
289
- - name: simplifications
290
- dtype: string
291
- splits:
292
- - name: train
293
- num_bytes: 29726
294
- num_examples: 136
295
- - name: validation
296
- num_bytes: 3822
297
- num_examples: 17
298
- - name: test
299
- num_bytes: 3983
300
- num_examples: 17
301
- download_size: 37554
302
- dataset_size: 37531
303
- - config_name: Terence
304
- features:
305
- - name: original
306
- dtype: string
307
- - name: simple
308
- sequence:
309
- - name: simplifications
310
- dtype: string
311
- splits:
312
- - name: train
313
- num_bytes: 168652
314
- num_examples: 809
315
- - name: validation
316
- num_bytes: 20942
317
- num_examples: 102
318
- - name: test
319
- num_bytes: 19918
320
- num_examples: 101
321
- download_size: 143538
322
- dataset_size: 209512
323
- - config_name: TextComplexityDE
324
- features:
325
- - name: original
326
- dtype: string
327
- - name: simple
328
- sequence:
329
- - name: simplifications
330
- dtype: string
331
- splits:
332
- - name: train
333
- num_bytes: 81994
334
- num_examples: 200
335
- - name: validation
336
- num_bytes: 11539
337
- num_examples: 25
338
- - name: test
339
- num_bytes: 8776
340
- num_examples: 25
341
- download_size: 80278
342
- dataset_size: 102309
343
- - config_name: WikiAutoEN
344
- features:
345
- - name: original
346
- dtype: string
347
- - name: simple
348
- sequence:
349
- - name: simplifications
350
- dtype: string
351
- splits:
352
- - name: train
353
- num_bytes: 142873905
354
- num_examples: 576126
355
- - name: validation
356
- num_bytes: 1265282
357
- num_examples: 4988
358
- - name: test
359
- num_bytes: 1243704
360
- num_examples: 5002
361
- download_size: 103608580
362
- dataset_size: 145382891
363
- - config_name: WikiLargeFR
364
- features:
365
- - name: original
366
- dtype: string
367
- - name: simple
368
- sequence:
369
- - name: simplifications
370
- dtype: string
371
- splits:
372
- - name: train
373
- num_bytes: 80861778
374
- num_examples: 296402
375
- - name: validation
376
- num_bytes: 257078
377
- num_examples: 878
378
- - name: test
379
- num_bytes: 100283
380
- num_examples: 345
381
- download_size: 55591677
382
- dataset_size: 81219139
383
- configs:
384
- - config_name: ASSET
385
- data_files:
386
- - split: train
387
- path: ASSET/train-*
388
- - split: validation
389
- path: ASSET/validation-*
390
- - split: test
391
- path: ASSET/test-*
392
- - config_name: AdminIt
393
- data_files:
394
- - split: train
395
- path: AdminIt/train-*
396
- - split: validation
397
- path: AdminIt/validation-*
398
- - split: test
399
- path: AdminIt/test-*
400
- - config_name: CLEAR
401
- data_files:
402
- - split: train
403
- path: CLEAR/train-*
404
- - split: validation
405
- path: CLEAR/validation-*
406
- - split: test
407
- path: CLEAR/test-*
408
- - config_name: EasyJapanese
409
- data_files:
410
- - split: train
411
- path: EasyJapanese/train-*
412
- - split: validation
413
- path: EasyJapanese/validation-*
414
- - split: test
415
- path: EasyJapanese/test-*
416
- - config_name: EasyJapaneseExtended
417
- data_files:
418
- - split: train
419
- path: EasyJapaneseExtended/train-*
420
- - split: validation
421
- path: EasyJapaneseExtended/validation-*
422
- - split: test
423
- path: EasyJapaneseExtended/test-*
424
- - config_name: GEOLinoTest
425
- data_files:
426
- - split: train
427
- path: GEOLinoTest/train-*
428
- - split: validation
429
- path: GEOLinoTest/validation-*
430
- - split: test
431
- path: GEOLinoTest/test-*
432
- - config_name: PaCCSS-IT
433
- data_files:
434
- - split: train
435
- path: PaCCSS-IT/train-*
436
- - split: validation
437
- path: PaCCSS-IT/validation-*
438
- - split: test
439
- path: PaCCSS-IT/test-*
440
- - config_name: PorSimples
441
- data_files:
442
- - split: train
443
- path: PorSimples/train-*
444
- - split: validation
445
- path: PorSimples/validation-*
446
- - split: test
447
- path: PorSimples/test-*
448
- - config_name: RSSE
449
- data_files:
450
- - split: train
451
- path: RSSE/train-*
452
- - split: validation
453
- path: RSSE/validation-*
454
- - split: test
455
- path: RSSE/test-*
456
- - config_name: RuAdaptEncy
457
- data_files:
458
- - split: train
459
- path: RuAdaptEncy/train-*
460
- - split: validation
461
- path: RuAdaptEncy/validation-*
462
- - split: test
463
- path: RuAdaptEncy/test-*
464
- - config_name: RuAdaptFairytales
465
- data_files:
466
- - split: train
467
- path: RuAdaptFairytales/train-*
468
- - split: validation
469
- path: RuAdaptFairytales/validation-*
470
- - split: test
471
- path: RuAdaptFairytales/test-*
472
- - config_name: RuWikiLarge
473
- data_files:
474
- - split: train
475
- path: RuWikiLarge/train-*
476
- - split: validation
477
- path: RuWikiLarge/validation-*
478
- - split: test
479
- path: RuWikiLarge/test-*
480
- - config_name: SimpitikiWiki
481
- data_files:
482
- - split: train
483
- path: SimpitikiWiki/train-*
484
- - split: validation
485
- path: SimpitikiWiki/validation-*
486
- - split: test
487
- path: SimpitikiWiki/test-*
488
- - config_name: TSSlovene
489
- data_files:
490
- - split: train
491
- path: TSSlovene/train-*
492
- - split: validation
493
- path: TSSlovene/validation-*
494
- - split: test
495
- path: TSSlovene/test-*
496
- - config_name: Teacher
497
- data_files:
498
- - split: train
499
- path: Teacher/train-*
500
- - split: validation
501
- path: Teacher/validation-*
502
- - split: test
503
- path: Teacher/test-*
504
- - config_name: Terence
505
- data_files:
506
- - split: train
507
- path: Terence/train-*
508
- - split: validation
509
- path: Terence/validation-*
510
- - split: test
511
- path: Terence/test-*
512
- - config_name: TextComplexityDE
513
- data_files:
514
- - split: train
515
- path: TextComplexityDE/train-*
516
- - split: validation
517
- path: TextComplexityDE/validation-*
518
- - split: test
519
- path: TextComplexityDE/test-*
520
- - config_name: WikiAutoEN
521
- data_files:
522
- - split: train
523
- path: WikiAutoEN/train-*
524
- - split: validation
525
- path: WikiAutoEN/validation-*
526
- - split: test
527
- path: WikiAutoEN/test-*
528
- - config_name: WikiLargeFR
529
- data_files:
530
- - split: train
531
- path: WikiLargeFR/train-*
532
- - split: validation
533
- path: WikiLargeFR/validation-*
534
- - split: test
535
- path: WikiLargeFR/test-*
536
  ---
537
- # Dataset Card for "MultiSimV2"
538
 
539
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ - fr
6
+ - ru
7
+ - ja
8
+ - it
9
+ - da
10
+ - es
11
+ - de
12
+ - pt
13
+ - sl
14
+ - ur
15
+ - eu
16
+ task_categories:
17
+ - summarization
18
+ - text2text-generation
19
+ - text-generation
20
+ pretty_name: MultiSim
21
+ tags:
22
+ - medical
23
+ - legal
24
+ - wikipedia
25
+ - encyclopedia
26
+ - science
27
+ - literature
28
+ - news
29
+ - websites
30
+ size_categories:
31
+ - 1M<n<10M
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ---
 
33
 
34
+ # Dataset Card for MultiSim Benchmark
35
+
36
+ ## Dataset Description
37
+
38
+ - **Repository:https://github.com/XenonMolecule/MultiSim/tree/main**
39
+ - **Paper:https://aclanthology.org/2023.acl-long.269/ https://arxiv.org/pdf/2305.15678.pdf**
40
+ - **Point of Contact: michaeljryan@stanford.edu**
41
+
42
+ ### Dataset Summary
43
+
44
+ The MultiSim benchmark is a growing collection of text simplification datasets targeted at sentence simplification in several languages. Currently, the benchmark spans 12 languages.
45
+
46
+ ![Figure showing four complex and simple sentence pairs. One pair in English, one in Japanese, one in Urdu, and one in Russian. The English complex sentence reads "He settled in London, devoting himself chiefly to practical teaching." which is paired with the simple sentence "He lived in London. He was a teacher."](MultiSimEx.png "MultiSim Example")
47
+
48
+ ### Supported Tasks
49
+
50
+ - Sentence Simplification
51
+
52
+ ### Usage
53
+
54
+ ```python
55
+ from datasets import load_dataset
56
+
57
+ dataset = load_dataset("MichaelR207/MultiSim")
58
+ ```
59
+
60
+ ### Citation
61
+ If you use this benchmark, please cite our [paper](https://aclanthology.org/2023.acl-long.269/):
62
+ ```
63
+ @inproceedings{ryan-etal-2023-revisiting,
64
+ title = "Revisiting non-{E}nglish Text Simplification: A Unified Multilingual Benchmark",
65
+ author = "Ryan, Michael and
66
+ Naous, Tarek and
67
+ Xu, Wei",
68
+ booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
69
+ month = jul,
70
+ year = "2023",
71
+ address = "Toronto, Canada",
72
+ publisher = "Association for Computational Linguistics",
73
+ url = "https://aclanthology.org/2023.acl-long.269",
74
+ pages = "4898--4927",
75
+ abstract = "Recent advancements in high-quality, large-scale English resources have pushed the frontier of English Automatic Text Simplification (ATS) research. However, less work has been done on multilingual text simplification due to the lack of a diverse evaluation benchmark that covers complex-simple sentence pairs in many languages. This paper introduces the MultiSim benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs. This benchmark will encourage research in developing more effective multilingual text simplification models and evaluation metrics. Our experiments using MultiSim with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings. We observe strong performance from Russian in zero-shot cross-lingual transfer to low-resource languages. We further show that few-shot prompting with BLOOM-176b achieves comparable quality to reference simplifications outperforming fine-tuned models in most languages. We validate these findings through human evaluation.",
76
+ }
77
+ ```
78
+
79
+ ### Contact
80
+
81
+ **Michael Ryan**: [Scholar](https://scholar.google.com/citations?user=8APGEEkAAAAJ&hl=en) | [Twitter](http://twitter.com/michaelryan207) | [Github](https://github.com/XenonMolecule) | [LinkedIn](https://www.linkedin.com/in/michael-ryan-207/) | [Research Gate](https://www.researchgate.net/profile/Michael-Ryan-86) | [Personal Website](http://michaelryan.tech/) | [michaeljryan@stanford.edu](mailto://michaeljryan@stanford.edu)
82
+
83
+ ### Languages
84
+
85
+ - English
86
+ - French
87
+ - Russian
88
+ - Japanese
89
+ - Italian
90
+ - Danish (on request)
91
+ - Spanish (on request)
92
+ - German
93
+ - Brazilian Portuguese
94
+ - Slovene
95
+ - Urdu (on request)
96
+ - Basque (on request)
97
+
98
+ ## Dataset Structure
99
+
100
+ ### Data Instances
101
+
102
+ MultiSim is a collection of 27 existing datasets:
103
+ - AdminIT
104
+ - ASSET
105
+ - CBST
106
+ - CLEAR
107
+ - DSim
108
+ - Easy Japanese
109
+ - Easy Japanese Extended
110
+ - GEOLino
111
+ - German News
112
+ - Newsela EN/ES
113
+ - PaCCSS-IT
114
+ - PorSimples
115
+ - RSSE
116
+ - RuAdapt Encyclopedia
117
+ - RuAdapt Fairytales
118
+ - RuAdapt Literature
119
+ - RuWikiLarge
120
+ - SIMPITIKI
121
+ - Simple German
122
+ - Simplext
123
+ - SimplifyUR
124
+ - SloTS
125
+ - Teacher
126
+ - Terence
127
+ - TextComplexityDE
128
+ - WikiAuto
129
+ - WikiLargeFR
130
+
131
+ ![Table 1: Important properties of text simplification parallel corpora](Table1.png "Table 1")
132
+
133
+ ### Data Fields
134
+
135
+ In the train set, you will only find `original` and `simple` sentences. In the validation and test sets you may find `simple1`, `simple2`, ... `simpleN` because a given sentence can have multiple reference simplifications (useful in SARI and BLEU calculations)
136
+
137
+ ### Data Splits
138
+
139
+ The dataset is split into a train, validation, and test set.
140
+
141
+ ![Table 2: MultiSim splits. *Original splits preserved](Table2.png "Table 2")
142
+
143
+ ## Dataset Creation
144
+
145
+ ### Curation Rationale
146
+
147
+ I hope that collecting all of these independently useful resources for text simplification together into one benchmark will encourage multilingual work on text simplification!
148
+
149
+ ### Source Data
150
+
151
+ #### Initial Data Collection and Normalization
152
+
153
+ Data is compiled from the 27 existing datasets that comprise the MultiSim Benchmark. For details on each of the resources please see Appendix A in the [paper](https://aclanthology.org/2023.acl-long.269.pdf).
154
+
155
+ #### Who are the source language producers?
156
+
157
+ Each dataset has different sources. At a high level the sources are: Automatically Collected (ex. Wikipedia, Web data), Manually Collected (ex. annotators asked to simplify sentences), Target Audience Resources (ex. Newsela News Articles), or Translated (ex. Machine translations of existing datasets).
158
+ These sources can be seen in Table 1 pictured above (Section: `Dataset Structure/Data Instances`) and further discussed in section 3 of the [paper](https://aclanthology.org/2023.acl-long.269.pdf). Appendix A of the paper has details on specific resources.
159
+
160
+ ### Annotations
161
+
162
+ #### Annotation process
163
+
164
+ Annotators writing simplifications (only for some datasets) typically follow an annotation guideline. Some example guidelines come from [here](https://dl.acm.org/doi/10.1145/1410140.1410191), [here](https://link.springer.com/article/10.1007/s11168-006-9011-1), and [here](https://link.springer.com/article/10.1007/s10579-017-9407-6).
165
+
166
+ #### Who are the annotators?
167
+
168
+ See Table 1 (Section: `Dataset Structure/Data Instances`) for specific annotators per dataset. At a high level the annotators are: writers, translators, teachers, linguists, journalists, crowdworkers, experts, news agencies, medical students, students, writers, and researchers.
169
+
170
+ ### Personal and Sensitive Information
171
+
172
+ No dataset should contain personal or sensitive information. These were previously collected resources primarily collected from news sources, wikipedia, science communications, etc. and were not identified to have personally identifiable information.
173
+
174
+ ## Considerations for Using the Data
175
+
176
+ ### Social Impact of Dataset
177
+
178
+ We hope this dataset will make a greatly positive social impact as text simplification is a task that serves children, second language learners, and people with reading/cognitive disabilities. By publicly releasing a dataset in 12 languages we hope to serve these global communities.
179
+ One negative and unintended use case for this data would be reversing the labels to make a "text complification" model. We beleive the benefits of releasing this data outweigh the harms and hope that people use the dataset as intended.
180
+
181
+ ### Discussion of Biases
182
+
183
+ There may be biases of the annotators involved in writing the simplifications towards how they believe a simpler sentence should be written. Additionally annotators and editors have the choice of what information does not make the cut in the simpler sentence introducing information importance bias.
184
+
185
+ ### Other Known Limitations
186
+
187
+ Some of the included resources were automatically collected or machine translated. As such not every sentence is perfectly aligned. Users are recommended to use such individual resources with caution.
188
+
189
+ ## Additional Information
190
+
191
+ ### Dataset Curators
192
+
193
+ **Michael Ryan**: [Scholar](https://scholar.google.com/citations?user=8APGEEkAAAAJ&hl=en) | [Twitter](http://twitter.com/michaelryan207) | [Github](https://github.com/XenonMolecule) | [LinkedIn](https://www.linkedin.com/in/michael-ryan-207/) | [Research Gate](https://www.researchgate.net/profile/Michael-Ryan-86) | [Personal Website](http://michaelryan.tech/) | [michaeljryan@stanford.edu](mailto://michaeljryan@stanford.edu)
194
+
195
+ ### Licensing Information
196
+
197
+ MIT License
198
+
199
+ ### Citation Information
200
+
201
+ Please cite the individual datasets that you use within the MultiSim benchmark as appropriate. Proper bibtex attributions for each of the datasets are included below.
202
+
203
+ #### AdminIT
204
+ ```
205
+ @inproceedings{miliani-etal-2022-neural,
206
+ title = "Neural Readability Pairwise Ranking for Sentences in {I}talian Administrative Language",
207
+ author = "Miliani, Martina and
208
+ Auriemma, Serena and
209
+ Alva-Manchego, Fernando and
210
+ Lenci, Alessandro",
211
+ booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing",
212
+ month = nov,
213
+ year = "2022",
214
+ address = "Online only",
215
+ publisher = "Association for Computational Linguistics",
216
+ url = "https://aclanthology.org/2022.aacl-main.63",
217
+ pages = "849--866",
218
+ abstract = "Automatic Readability Assessment aims at assigning a complexity level to a given text, which could help improve the accessibility to information in specific domains, such as the administrative one. In this paper, we investigate the behavior of a Neural Pairwise Ranking Model (NPRM) for sentence-level readability assessment of Italian administrative texts. To deal with data scarcity, we experiment with cross-lingual, cross- and in-domain approaches, and test our models on Admin-It, a new parallel corpus in the Italian administrative language, containing sentences simplified using three different rewriting strategies. We show that NPRMs are effective in zero-shot scenarios ({\textasciitilde}0.78 ranking accuracy), especially with ranking pairs containing simplifications produced by overall rewriting at the sentence-level, and that the best results are obtained by adding in-domain data (achieving perfect performance for such sentence pairs). Finally, we investigate where NPRMs failed, showing that the characteristics of the training data, rather than its size, have a bigger effect on a model{'}s performance.",
219
+ }
220
+ ```
221
+
222
+ #### ASSET
223
+ ```
224
+ @inproceedings{alva-manchego-etal-2020-asset,
225
+ title = "{ASSET}: {A} Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations",
226
+ author = "Alva-Manchego, Fernando and
227
+ Martin, Louis and
228
+ Bordes, Antoine and
229
+ Scarton, Carolina and
230
+ Sagot, Beno{\^\i}t and
231
+ Specia, Lucia",
232
+ booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
233
+ month = jul,
234
+ year = "2020",
235
+ address = "Online",
236
+ publisher = "Association for Computational Linguistics",
237
+ url = "https://www.aclweb.org/anthology/2020.acl-main.424",
238
+ pages = "4668--4679",
239
+ }
240
+ ```
241
+ #### CBST
242
+ ```
243
+ @article{10.1007/s10579-017-9407-6,
244
+ title={{The corpus of Basque simplified texts (CBST)}},
245
+ author={Gonzalez-Dios, Itziar and Aranzabe, Mar{\'\i}a Jes{\'u}s and D{\'\i}az de Ilarraza, Arantza},
246
+ journal={Language Resources and Evaluation},
247
+ volume={52},
248
+ number={1},
249
+ pages={217--247},
250
+ year={2018},
251
+ publisher={Springer}
252
+ }
253
+ ```
254
+ #### CLEAR
255
+ ```
256
+ @inproceedings{grabar-cardon-2018-clear,
257
+ title = "{CLEAR} {--} Simple Corpus for Medical {F}rench",
258
+ author = "Grabar, Natalia and
259
+ Cardon, R{\'e}mi",
260
+ booktitle = "Proceedings of the 1st Workshop on Automatic Text Adaptation ({ATA})",
261
+ month = nov,
262
+ year = "2018",
263
+ address = "Tilburg, the Netherlands",
264
+ publisher = "Association for Computational Linguistics",
265
+ url = "https://aclanthology.org/W18-7002",
266
+ doi = "10.18653/v1/W18-7002",
267
+ pages = "3--9",
268
+ }
269
+ ```
270
+ #### DSim
271
+ ```
272
+ @inproceedings{klerke-sogaard-2012-dsim,
273
+ title = "{DS}im, a {D}anish Parallel Corpus for Text Simplification",
274
+ author = "Klerke, Sigrid and
275
+ S{\o}gaard, Anders",
276
+ booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
277
+ month = may,
278
+ year = "2012",
279
+ address = "Istanbul, Turkey",
280
+ publisher = "European Language Resources Association (ELRA)",
281
+ url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/270_Paper.pdf",
282
+ pages = "4015--4018",
283
+ abstract = "We present DSim, a new sentence aligned Danish monolingual parallel corpus extracted from 3701 pairs of news telegrams and corresponding professionally simplified short news articles. The corpus is intended for building automatic text simplification for adult readers. We compare DSim to different examples of monolingual parallel corpora, and we argue that this corpus is a promising basis for future development of automatic data-driven text simplification systems in Danish. The corpus contains both the collection of paired articles and a sentence aligned bitext, and we show that sentence alignment using simple tf*idf weighted cosine similarity scoring is on line with state―of―the―art when evaluated against a hand-aligned sample. The alignment results are compared to state of the art for English sentence alignment. We finally compare the source and simplified sides of the corpus in terms of lexical and syntactic characteristics and readability, and find that the one―to―many sentence aligned corpus is representative of the sentence simplifications observed in the unaligned collection of article pairs.",
284
+ }
285
+ ```
286
+ #### Easy Japanese
287
+ ```
288
+ @inproceedings{maruyama-yamamoto-2018-simplified,
289
+ title = "Simplified Corpus with Core Vocabulary",
290
+ author = "Maruyama, Takumi and
291
+ Yamamoto, Kazuhide",
292
+ booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
293
+ month = may,
294
+ year = "2018",
295
+ address = "Miyazaki, Japan",
296
+ publisher = "European Language Resources Association (ELRA)",
297
+ url = "https://aclanthology.org/L18-1185",
298
+ }
299
+ ```
300
+ #### Easy Japanese Extended
301
+ ```
302
+ @inproceedings{katsuta-yamamoto-2018-crowdsourced,
303
+ title = "Crowdsourced Corpus of Sentence Simplification with Core Vocabulary",
304
+ author = "Katsuta, Akihiro and
305
+ Yamamoto, Kazuhide",
306
+ booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
307
+ month = may,
308
+ year = "2018",
309
+ address = "Miyazaki, Japan",
310
+ publisher = "European Language Resources Association (ELRA)",
311
+ url = "https://aclanthology.org/L18-1072",
312
+ }
313
+ ```
314
+ #### GEOLino
315
+ ```
316
+ @inproceedings{mallinson2020,
317
+ title={Zero-Shot Crosslingual Sentence Simplification},
318
+ author={Mallinson, Jonathan and Sennrich, Rico and Lapata, Mirella},
319
+ year={2020},
320
+ booktitle={2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)}
321
+ }
322
+ ```
323
+ #### German News
324
+ ```
325
+ @inproceedings{sauberli-etal-2020-benchmarking,
326
+ title = "Benchmarking Data-driven Automatic Text Simplification for {G}erman",
327
+ author = {S{\"a}uberli, Andreas and
328
+ Ebling, Sarah and
329
+ Volk, Martin},
330
+ booktitle = "Proceedings of the 1st Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI)",
331
+ month = may,
332
+ year = "2020",
333
+ address = "Marseille, France",
334
+ publisher = "European Language Resources Association",
335
+ url = "https://aclanthology.org/2020.readi-1.7",
336
+ pages = "41--48",
337
+ abstract = "Automatic text simplification is an active research area, and there are first systems for English, Spanish, Portuguese, and Italian. For German, no data-driven approach exists to this date, due to a lack of training data. In this paper, we present a parallel corpus of news items in German with corresponding simplifications on two complexity levels. The simplifications have been produced according to a well-documented set of guidelines. We then report on experiments in automatically simplifying the German news items using state-of-the-art neural machine translation techniques. We demonstrate that despite our small parallel corpus, our neural models were able to learn essential features of simplified language, such as lexical substitutions, deletion of less relevant words and phrases, and sentence shortening.",
338
+ language = "English",
339
+ ISBN = "979-10-95546-45-0",
340
+ }
341
+ ```
342
+ #### Newsela EN/ES
343
+ ```
344
+ @article{xu-etal-2015-problems,
345
+ title = "Problems in Current Text Simplification Research: New Data Can Help",
346
+ author = "Xu, Wei and
347
+ Callison-Burch, Chris and
348
+ Napoles, Courtney",
349
+ journal = "Transactions of the Association for Computational Linguistics",
350
+ volume = "3",
351
+ year = "2015",
352
+ address = "Cambridge, MA",
353
+ publisher = "MIT Press",
354
+ url = "https://aclanthology.org/Q15-1021",
355
+ doi = "10.1162/tacl_a_00139",
356
+ pages = "283--297",
357
+ abstract = "Simple Wikipedia has dominated simplification research in the past 5 years. In this opinion paper, we argue that focusing on Wikipedia limits simplification research. We back up our arguments with corpus analysis and by highlighting statements that other researchers have made in the simplification literature. We introduce a new simplification dataset that is a significant improvement over Simple Wikipedia, and present a novel quantitative-comparative approach to study the quality of simplification data resources.",
358
+ }
359
+ ```
360
+ #### PaCCSS-IT
361
+ ```
362
+ @inproceedings{brunato-etal-2016-paccss,
363
+ title = "{P}a{CCSS}-{IT}: A Parallel Corpus of Complex-Simple Sentences for Automatic Text Simplification",
364
+ author = "Brunato, Dominique and
365
+ Cimino, Andrea and
366
+ Dell{'}Orletta, Felice and
367
+ Venturi, Giulia",
368
+ booktitle = "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
369
+ month = nov,
370
+ year = "2016",
371
+ address = "Austin, Texas",
372
+ publisher = "Association for Computational Linguistics",
373
+ url = "https://aclanthology.org/D16-1034",
374
+ doi = "10.18653/v1/D16-1034",
375
+ pages = "351--361",
376
+ }
377
+ ```
378
+ #### PorSimples
379
+ ```
380
+ @inproceedings{aluisio-gasperin-2010-fostering,
381
+ title = "Fostering Digital Inclusion and Accessibility: The {P}or{S}imples project for Simplification of {P}ortuguese Texts",
382
+ author = "Alu{\'\i}sio, Sandra and
383
+ Gasperin, Caroline",
384
+ booktitle = "Proceedings of the {NAACL} {HLT} 2010 Young Investigators Workshop on Computational Approaches to Languages of the {A}mericas",
385
+ month = jun,
386
+ year = "2010",
387
+ address = "Los Angeles, California",
388
+ publisher = "Association for Computational Linguistics",
389
+ url = "https://aclanthology.org/W10-1607",
390
+ pages = "46--53",
391
+ }
392
+ ```
393
+ ```
394
+ @inproceedings{10.1007/978-3-642-16952-6_31,
395
+ author="Scarton, Carolina and Gasperin, Caroline and Aluisio, Sandra",
396
+ editor="Kuri-Morales, Angel and Simari, Guillermo R.",
397
+ title="Revisiting the Readability Assessment of Texts in Portuguese",
398
+ booktitle="Advances in Artificial Intelligence -- IBERAMIA 2010",
399
+ year="2010",
400
+ publisher="Springer Berlin Heidelberg",
401
+ address="Berlin, Heidelberg",
402
+ pages="306--315",
403
+ isbn="978-3-642-16952-6"
404
+ }
405
+ ```
406
+ #### RSSE
407
+ ```
408
+ @inproceedings{sakhovskiy2021rusimplesenteval,
409
+ title={{RuSimpleSentEval-2021 shared task:} evaluating sentence simplification for Russian},
410
+ author={Sakhovskiy, Andrey and Izhevskaya, Alexandra and Pestova, Alena and Tutubalina, Elena and Malykh, Valentin and Smurov, Ivana and Artemova, Ekaterina},
411
+ booktitle={Proceedings of the International Conference “Dialogue},
412
+ pages={607--617},
413
+ year={2021}
414
+ }
415
+ ```
416
+ #### RuAdapt
417
+ ```
418
+ @inproceedings{Dmitrieva2021Quantitative,
419
+ title={A quantitative study of simplification strategies in adapted texts for L2 learners of Russian},
420
+ author={Dmitrieva, Anna and Laposhina, Antonina and Lebedeva, Maria},
421
+ booktitle={Proceedings of the International Conference “Dialogue},
422
+ pages={191--203},
423
+ year={2021}
424
+ }
425
+ ```
426
+ ```
427
+ @inproceedings{dmitrieva-tiedemann-2021-creating,
428
+ title = "Creating an Aligned {R}ussian Text Simplification Dataset from Language Learner Data",
429
+ author = {Dmitrieva, Anna and
430
+ Tiedemann, J{\"o}rg},
431
+ booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
432
+ month = apr,
433
+ year = "2021",
434
+ address = "Kiyv, Ukraine",
435
+ publisher = "Association for Computational Linguistics",
436
+ url = "https://aclanthology.org/2021.bsnlp-1.8",
437
+ pages = "73--79",
438
+ abstract = "Parallel language corpora where regular texts are aligned with their simplified versions can be used in both natural language processing and theoretical linguistic studies. They are essential for the task of automatic text simplification, but can also provide valuable insights into the characteristics that make texts more accessible and reveal strategies that human experts use to simplify texts. Today, there exist a few parallel datasets for English and Simple English, but many other languages lack such data. In this paper we describe our work on creating an aligned Russian-Simple Russian dataset composed of Russian literature texts adapted for learners of Russian as a foreign language. This will be the first parallel dataset in this domain, and one of the first Simple Russian datasets in general.",
439
+ }
440
+ ```
441
+ #### RuWikiLarge
442
+ ```
443
+ @inproceedings{sakhovskiy2021rusimplesenteval,
444
+ title={{RuSimpleSentEval-2021 shared task:} evaluating sentence simplification for Russian},
445
+ author={Sakhovskiy, Andrey and Izhevskaya, Alexandra and Pestova, Alena and Tutubalina, Elena and Malykh, Valentin and Smurov, Ivana and Artemova, Ekaterina},
446
+ booktitle={Proceedings of the International Conference “Dialogue},
447
+ pages={607--617},
448
+ year={2021}
449
+ }
450
+ ```
451
+ #### SIMPITIKI
452
+ ```
453
+ @article{tonelli2016simpitiki,
454
+ title={SIMPITIKI: a Simplification corpus for Italian},
455
+ author={Tonelli, Sara and Aprosio, Alessio Palmero and Saltori, Francesca},
456
+ journal={Proceedings of CLiC-it},
457
+ year={2016}
458
+ }
459
+ ```
460
+ #### Simple German
461
+ ```
462
+ @inproceedings{battisti-etal-2020-corpus,
463
+ title = "A Corpus for Automatic Readability Assessment and Text Simplification of {G}erman",
464
+ author = {Battisti, Alessia and
465
+ Pf{\"u}tze, Dominik and
466
+ S{\"a}uberli, Andreas and
467
+ Kostrzewa, Marek and
468
+ Ebling, Sarah},
469
+ booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
470
+ month = may,
471
+ year = "2020",
472
+ address = "Marseille, France",
473
+ publisher = "European Language Resources Association",
474
+ url = "https://aclanthology.org/2020.lrec-1.404",
475
+ pages = "3302--3311",
476
+ abstract = "In this paper, we present a corpus for use in automatic readability assessment and automatic text simplification for German, the first of its kind for this language. The corpus is compiled from web sources and consists of parallel as well as monolingual-only (simplified German) data amounting to approximately 6,200 documents (nearly 211,000 sentences). As a unique feature, the corpus contains information on text structure (e.g., paragraphs, lines), typography (e.g., font type, font style), and images (content, position, and dimensions). While the importance of considering such information in machine learning tasks involving simplified language, such as readability assessment, has repeatedly been stressed in the literature, we provide empirical evidence for its benefit. We also demonstrate the added value of leveraging monolingual-only data for automatic text simplification via machine translation through applying back-translation, a data augmentation technique.",
477
+ language = "English",
478
+ ISBN = "979-10-95546-34-4",
479
+ }
480
+ ```
481
+ #### Simplext
482
+ ```
483
+ @article{10.1145/2738046,
484
+ author = {Saggion, Horacio and \v{S}tajner, Sanja and Bott, Stefan and Mille, Simon and Rello, Luz and Drndarevic, Biljana},
485
+ title = {Making It Simplext: Implementation and Evaluation of a Text Simplification System for Spanish},
486
+ year = {2015},
487
+ issue_date = {June 2015}, publisher = {Association for Computing Machinery},
488
+ address = {New York, NY, USA},
489
+ volume = {6},
490
+ number = {4},
491
+ issn = {1936-7228},
492
+ url = {https://doi.org/10.1145/2738046},
493
+ doi = {10.1145/2738046},
494
+ journal = {ACM Trans. Access. Comput.},
495
+ month = {may},
496
+ articleno = {14},
497
+ numpages = {36},
498
+ keywords = {Spanish, text simplification corpus, human evaluation, readability measures}
499
+ }
500
+ ```
501
+ #### SimplifyUR
502
+ ```
503
+ @inproceedings{qasmi-etal-2020-simplifyur,
504
+ title = "{S}implify{UR}: Unsupervised Lexical Text Simplification for {U}rdu",
505
+ author = "Qasmi, Namoos Hayat and
506
+ Zia, Haris Bin and
507
+ Athar, Awais and
508
+ Raza, Agha Ali",
509
+ booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
510
+ month = may,
511
+ year = "2020",
512
+ address = "Marseille, France",
513
+ publisher = "European Language Resources Association",
514
+ url = "https://aclanthology.org/2020.lrec-1.428",
515
+ pages = "3484--3489",
516
+ language = "English",
517
+ ISBN = "979-10-95546-34-4",
518
+ }
519
+ ```
520
+ #### SloTS
521
+ ```
522
+ @misc{gorenc2022slovene,
523
+ title = {Slovene text simplification dataset {SloTS}},
524
+ author = {Gorenc, Sabina and Robnik-{\v S}ikonja, Marko},
525
+ url = {http://hdl.handle.net/11356/1682},
526
+ note = {Slovenian language resource repository {CLARIN}.{SI}},
527
+ copyright = {Creative Commons - Attribution 4.0 International ({CC} {BY} 4.0)},
528
+ issn = {2820-4042},
529
+ year = {2022}
530
+ }
531
+ ```
532
+ #### Terence and Teacher
533
+ ```
534
+ @inproceedings{brunato-etal-2015-design,
535
+ title = "Design and Annotation of the First {I}talian Corpus for Text Simplification",
536
+ author = "Brunato, Dominique and
537
+ Dell{'}Orletta, Felice and
538
+ Venturi, Giulia and
539
+ Montemagni, Simonetta",
540
+ booktitle = "Proceedings of the 9th Linguistic Annotation Workshop",
541
+ month = jun,
542
+ year = "2015",
543
+ address = "Denver, Colorado, USA",
544
+ publisher = "Association for Computational Linguistics",
545
+ url = "https://aclanthology.org/W15-1604",
546
+ doi = "10.3115/v1/W15-1604",
547
+ pages = "31--41",
548
+ }
549
+ ```
550
+ #### TextComplexityDE
551
+ ```
552
+ @article{naderi2019subjective,
553
+ title={Subjective Assessment of Text Complexity: A Dataset for German Language},
554
+ author={Naderi, Babak and Mohtaj, Salar and Ensikat, Kaspar and M{\"o}ller, Sebastian},
555
+ journal={arXiv preprint arXiv:1904.07733},
556
+ year={2019}
557
+ }
558
+ ```
559
+ #### WikiAuto
560
+ ```
561
+ @inproceedings{acl/JiangMLZX20,
562
+ author = {Chao Jiang and
563
+ Mounica Maddela and
564
+ Wuwei Lan and
565
+ Yang Zhong and
566
+ Wei Xu},
567
+ editor = {Dan Jurafsky and
568
+ Joyce Chai and
569
+ Natalie Schluter and
570
+ Joel R. Tetreault},
571
+ title = {Neural {CRF} Model for Sentence Alignment in Text Simplification},
572
+ booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational
573
+ Linguistics, {ACL} 2020, Online, July 5-10, 2020},
574
+ pages = {7943--7960},
575
+ publisher = {Association for Computational Linguistics},
576
+ year = {2020},
577
+ url = {https://www.aclweb.org/anthology/2020.acl-main.709/}
578
+ }
579
+ ```
580
+ #### WikiLargeFR
581
+ ```
582
+ @inproceedings{cardon-grabar-2020-french,
583
+ title = "{F}rench Biomedical Text Simplification: When Small and Precise Helps",
584
+ author = "Cardon, R{\'e}mi and
585
+ Grabar, Natalia",
586
+ booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
587
+ month = dec,
588
+ year = "2020",
589
+ address = "Barcelona, Spain (Online)",
590
+ publisher = "International Committee on Computational Linguistics",
591
+ url = "https://aclanthology.org/2020.coling-main.62",
592
+ doi = "10.18653/v1/2020.coling-main.62",
593
+ pages = "710--716",
594
+ abstract = "We present experiments on biomedical text simplification in French. We use two kinds of corpora {--} parallel sentences extracted from existing health comparable corpora in French and WikiLarge corpus translated from English to French {--} and a lexicon that associates medical terms with paraphrases. Then, we train neural models on these parallel corpora using different ratios of general and specialized sentences. We evaluate the results with BLEU, SARI and Kandel scores. The results point out that little specialized data helps significantly the simplification.",
595
+ }
596
+ ```
597
+
598
+ ## Data Availability
599
+ ### Public Datasets
600
+ Most of the public datasets are available as a part of this MultiSim Repo. A few are still pending availability. For all resources we provide alternative download links.
601
+ | Dataset | Language | Availability in MultiSim Repo | Alternative Link |
602
+ |---|---|---|---|
603
+ | ASSET | English | Available | https://huggingface.co/datasets/asset |
604
+ | WikiAuto | English | Available | https://huggingface.co/datasets/wiki_auto |
605
+ | CLEAR | French | Available | http://natalia.grabar.free.fr/resources.php#remi |
606
+ | WikiLargeFR | French | Available | http://natalia.grabar.free.fr/resources.php#remi |
607
+ | GEOLino | German | Available | https://github.com/Jmallins/ZEST-data |
608
+ | TextComplexityDE | German | Available | https://github.com/babaknaderi/TextComplexityDE |
609
+ | AdminIT | Italian | Available | https://github.com/Unipisa/admin-It |
610
+ | Simpitiki | Italian | Available | https://github.com/dhfbk/simpitiki# |
611
+ | PaCCSS-IT | Italian | Available | http://www.italianlp.it/resources/paccss-it-parallel-corpus-of-complex-simple-sentences-for-italian/ |
612
+ | Terence and Teacher | Italian | Available | http://www.italianlp.it/resources/terence-and-teacher/ |
613
+ | Easy Japanese | Japanese | Available | https://www.jnlp.org/GengoHouse/snow/t15 |
614
+ | Easy Japanese Extended | Japanese | Available | https://www.jnlp.org/GengoHouse/snow/t23 |
615
+ | RuAdapt Encyclopedia | Russian | Available | https://github.com/Digital-Pushkin-Lab/RuAdapt |
616
+ | RuAdapt Fairytales | Russian | Available | https://github.com/Digital-Pushkin-Lab/RuAdapt |
617
+ | RuSimpleSentEval | Russian | Available | https://github.com/dialogue-evaluation/RuSimpleSentEval |
618
+ | RuWikiLarge | Russian | Available | https://github.com/dialogue-evaluation/RuSimpleSentEval |
619
+ | SloTS | Slovene | Available | https://github.com/sabina-skubic/text-simplification-slovene |
620
+ | SimplifyUR | Urdu | Pending | https://github.com/harisbinzia/SimplifyUR |
621
+ | PorSimples | Brazilian Portuguese | Available | [sandra@icmc.usp.br](mailto:sandra@icmc.usp.br) |
622
+
623
+ ### On Request Datasets
624
+ The authors of the original papers must be contacted for on request datasets. Contact information for the authors of each dataset is provided below.
625
+ | Dataset | Language | Contact |
626
+ |---|---|---|
627
+ | CBST | Basque | http://www.ixa.eus/node/13007?language=en <br/> [itziar.gonzalezd@ehu.eus](mailto:itziar.gonzalezd@ehu.eus) |
628
+ | DSim | Danish | [sk@eyejustread.com](mailto:sk@eyejustread.com) |
629
+ | Newsela EN | English | [https://newsela.com/data/](https://newsela.com/data/) |
630
+ | Newsela ES | Spanish | [https://newsela.com/data/](https://newsela.com/data/) |
631
+ | German News | German | [ebling@cl.uzh.ch](mailto:ebling@cl.uzh.ch) |
632
+ | Simple German | German | [ebling@cl.uzh.ch](mailto:ebling@cl.uzh.ch) |
633
+ | Simplext | Spanish | [horacio.saggion@upf.edu](mailto:horacio.saggion@upf.edu) |
634
+ | RuAdapt Literature | Russian | Partially Available: https://github.com/Digital-Pushkin-Lab/RuAdapt <br/> Full Dataset: [anna.dmitrieva@helsinki.fi](mailto:anna.dmitrieva@helsinki.fi) |