MoaazId commited on
Commit
b3d9e2c
·
1 Parent(s): a377382

Delete cityscape.py

Browse files
Files changed (1) hide show
  1. cityscape.py +0 -130
cityscape.py DELETED
@@ -1,130 +0,0 @@
1
- import pandas as pd
2
- from huggingface_hub import hf_hub_url # hf_hub_url is used to construct the URL of a file from the given information.
3
-
4
- import datasets
5
- import os
6
-
7
- #_VERSION = datasets.Version("0.0.2")
8
-
9
- _DESCRIPTION = "TODO"
10
- _HOMEPAGE = "TODO"
11
- _LICENSE = "TODO"
12
- _CITATION = "TODO"
13
-
14
- _FEATURES = datasets.Features(
15
- {
16
- "image": datasets.Image(),
17
- "conditioning_image": datasets.Image(),
18
- "text": datasets.Value("string"),
19
- },
20
- )
21
-
22
- METADATA_URL = hf_hub_url(
23
- "MoaazId/cityscape",
24
- filename="train.jsonl",
25
- repo_type="dataset",
26
- )
27
-
28
- IMAGES_URL = hf_hub_url(
29
- "MoaazId/cityscape",
30
- filename="leftImg8bit.zip/train/"+f"{city}", #M
31
- repo_type="dataset",
32
- )
33
-
34
- CONDITIONING_IMAGES_URL = hf_hub_url(
35
- "MoaazId/cityscape",
36
- filename="gtCoarse.zip/train/"+f"{city}", #M
37
- repo_type="dataset",
38
- )
39
-
40
- _DEFAULT_CONFIG = datasets.BuilderConfig(name="default")
41
-
42
-
43
- class Cityscape(datasets.GeneratorBasedBuilder):
44
- BUILDER_CONFIGS = [_DEFAULT_CONFIG]
45
- DEFAULT_CONFIG_NAME = "default"
46
-
47
- def _info(self):
48
- return datasets.DatasetInfo(
49
- description=_DESCRIPTION,
50
- features=_FEATURES,
51
- supervised_keys=None,
52
- homepage=_HOMEPAGE,
53
- license=_LICENSE,
54
- citation=_CITATION,
55
- )
56
-
57
- def _split_generators(self, dl_manager):
58
- metadata_path = dl_manager.download(METADATA_URL)
59
- images_dir = dl_manager.download_and_extract(IMAGES_URL)
60
- conditioning_images_dir = dl_manager.download_and_extract(
61
- CONDITIONING_IMAGES_URL
62
- )
63
-
64
-
65
- # Iterate through the city folders in the image directory
66
- for city_folder in os.listdir(images_dir):
67
- city_dir = os.path.join(images_dir, city_folder)
68
-
69
- # Iterate through image files in the city directory
70
- for image_filename in os.listdir(city_dir):
71
- # Extract relevant information from the image filename
72
- parts = image_filename.split("_")
73
- city = parts[0]
74
- seq = parts[1]
75
- frame = parts[2]
76
-
77
- # Construct the paths to the image and conditioning image
78
- image_path = os.path.join(city_dir, image_filename)
79
- conditioning_image_filename = f"{city}_{seq}_{frame}_gtCoarse_color.png"
80
- conditioning_image_path = os.path.join(conditioning_dir, city_folder+"/"+conditioning_image_filename)
81
-
82
- # Create a dataset entry as a dictionary
83
- entry = {
84
- "text": "A view to a street from a car's front window",
85
- "image": image_path,
86
- "conditioning_image": conditioning_image_path,
87
- }
88
-
89
-
90
-
91
-
92
- return [
93
- datasets.SplitGenerator(
94
- name=datasets.Split.TRAIN,
95
- # These kwargs will be passed to _generate_examples
96
- gen_kwargs={
97
- "metadata_path": metadata_path,
98
- "images_dir": images_dir,
99
- "conditioning_images_dir": conditioning_images_dir,
100
- },
101
- ),
102
- ]
103
-
104
- def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
105
- metadata = pd.read_json(metadata_path, lines=True)
106
-
107
- for _, row in metadata.iterrows():
108
- text = row["text"]
109
-
110
- image_path = row["image"]
111
- image_path = os.path.join(images_dir, image_path)
112
- image = open(image_path, "rb").read()
113
-
114
- conditioning_image_path = row["conditioning_image"]
115
- conditioning_image_path = os.path.join(
116
- conditioning_images_dir, row["conditioning_image"]
117
- )
118
- conditioning_image = open(conditioning_image_path, "rb").read()
119
-
120
- yield row["image"], {
121
- "text": text,
122
- "image": {
123
- "path": image_path,
124
- "bytes": image,
125
- },
126
- "conditioning_image": {
127
- "path": conditioning_image_path,
128
- "bytes": conditioning_image,
129
- },
130
- }