File size: 31,241 Bytes
9ce215a
 
 
 
 
ee36dd6
0a5a3d5
9ce215a
 
 
 
 
 
 
 
 
 
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd0c68
 
 
9982f17
 
 
 
 
9ce215a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9982f17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
---
annotations_creators:
- no-annotation
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: Monash Time Series Forecasting Repository
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: weather
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 176893738
    num_examples: 3010
  - name: test
    num_bytes: 177638713
    num_examples: 3010
  - name: validation
    num_bytes: 177266226
    num_examples: 3010
  download_size: 38820451
  dataset_size: 531798677
- config_name: tourism_yearly
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 54264
    num_examples: 518
  - name: test
    num_bytes: 71358
    num_examples: 518
  - name: validation
    num_bytes: 62811
    num_examples: 518
  download_size: 36749
  dataset_size: 188433
- config_name: tourism_quarterly
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 162738
    num_examples: 427
  - name: test
    num_bytes: 190920
    num_examples: 427
  - name: validation
    num_bytes: 176829
    num_examples: 427
  download_size: 93833
  dataset_size: 530487
- config_name: tourism_monthly
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 391518
    num_examples: 366
  - name: test
    num_bytes: 463986
    num_examples: 366
  - name: validation
    num_bytes: 427752
    num_examples: 366
  download_size: 199791
  dataset_size: 1283256
- config_name: cif_2016
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 24731
    num_examples: 72
  - name: test
    num_bytes: 31859
    num_examples: 72
  - name: validation
    num_bytes: 28295
    num_examples: 72
  download_size: 53344
  dataset_size: 84885
- config_name: london_smart_meters
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 684386194
    num_examples: 5560
  - name: test
    num_bytes: 687138394
    num_examples: 5560
  - name: validation
    num_bytes: 685762294
    num_examples: 5560
  download_size: 219673439
  dataset_size: 2057286882
- config_name: australian_electricity_demand
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 4763162
    num_examples: 5
  - name: test
    num_bytes: 4765637
    num_examples: 5
  - name: validation
    num_bytes: 4764400
    num_examples: 5
  download_size: 5770526
  dataset_size: 14293199
- config_name: wind_farms_minutely
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 710078918
    num_examples: 339
  - name: test
    num_bytes: 710246723
    num_examples: 339
  - name: validation
    num_bytes: 710162820
    num_examples: 339
  download_size: 71383130
  dataset_size: 2130488461
- config_name: bitcoin
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 336511
    num_examples: 18
  - name: test
    num_bytes: 340966
    num_examples: 18
  - name: validation
    num_bytes: 338738
    num_examples: 18
  download_size: 220403
  dataset_size: 1016215
- config_name: pedestrian_counts
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 12897120
    num_examples: 66
  - name: test
    num_bytes: 12923256
    num_examples: 66
  - name: validation
    num_bytes: 12910188
    num_examples: 66
  download_size: 4587054
  dataset_size: 38730564
- config_name: vehicle_trips
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 105261
    num_examples: 329
  - name: test
    num_bytes: 186688
    num_examples: 329
  - name: validation
    num_bytes: 145974
    num_examples: 329
  download_size: 44914
  dataset_size: 437923
- config_name: kdd_cup_2018
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 12040046
    num_examples: 270
  - name: test
    num_bytes: 12146966
    num_examples: 270
  - name: validation
    num_bytes: 12093506
    num_examples: 270
  download_size: 2456948
  dataset_size: 36280518
- config_name: nn5_daily
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 314828
    num_examples: 111
  - name: test
    num_bytes: 366110
    num_examples: 111
  - name: validation
    num_bytes: 340469
    num_examples: 111
  download_size: 287708
  dataset_size: 1021407
- config_name: nn5_weekly
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 48344
    num_examples: 111
  - name: test
    num_bytes: 55670
    num_examples: 111
  - name: validation
    num_bytes: 52007
    num_examples: 111
  download_size: 62043
  dataset_size: 156021
- config_name: kaggle_web_traffic
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 415494391
    num_examples: 145063
  - name: test
    num_bytes: 486103806
    num_examples: 145063
  - name: validation
    num_bytes: 450799098
    num_examples: 145063
  download_size: 145485324
  dataset_size: 1352397295
- config_name: kaggle_web_traffic_weekly
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 64242469
    num_examples: 145063
  - name: test
    num_bytes: 73816627
    num_examples: 145063
  - name: validation
    num_bytes: 69029548
    num_examples: 145063
  download_size: 28930900
  dataset_size: 207088644
- config_name: solar_10_minutes
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 29640033
    num_examples: 137
  - name: test
    num_bytes: 29707848
    num_examples: 137
  - name: validation
    num_bytes: 29673941
    num_examples: 137
  download_size: 4559353
  dataset_size: 89021822
- config_name: solar_weekly
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 28614
    num_examples: 137
  - name: test
    num_bytes: 34265
    num_examples: 137
  - name: validation
    num_bytes: 31439
    num_examples: 137
  download_size: 24375
  dataset_size: 94318
- config_name: car_parts
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 396653
    num_examples: 2674
  - name: test
    num_bytes: 661379
    num_examples: 2674
  - name: validation
    num_bytes: 529016
    num_examples: 2674
  download_size: 39656
  dataset_size: 1587048
- config_name: fred_md
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 314514
    num_examples: 107
  - name: test
    num_bytes: 325107
    num_examples: 107
  - name: validation
    num_bytes: 319811
    num_examples: 107
  download_size: 169107
  dataset_size: 959432
- config_name: traffic_hourly
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 62071974
    num_examples: 862
  - name: test
    num_bytes: 62413326
    num_examples: 862
  - name: validation
    num_bytes: 62242650
    num_examples: 862
  download_size: 22868806
  dataset_size: 186727950
- config_name: traffic_weekly
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 344154
    num_examples: 862
  - name: test
    num_bytes: 401046
    num_examples: 862
  - name: validation
    num_bytes: 372600
    num_examples: 862
  download_size: 245126
  dataset_size: 1117800
- config_name: hospital
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 217625
    num_examples: 767
  - name: test
    num_bytes: 293558
    num_examples: 767
  - name: validation
    num_bytes: 255591
    num_examples: 767
  download_size: 78110
  dataset_size: 766774
- config_name: covid_deaths
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 176352
    num_examples: 266
  - name: test
    num_bytes: 242187
    num_examples: 266
  - name: validation
    num_bytes: 209270
    num_examples: 266
  download_size: 27335
  dataset_size: 627809
- config_name: sunspot
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 304726
    num_examples: 1
  - name: test
    num_bytes: 304974
    num_examples: 1
  - name: validation
    num_bytes: 304850
    num_examples: 1
  download_size: 68865
  dataset_size: 914550
- config_name: saugeenday
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 97722
    num_examples: 1
  - name: test
    num_bytes: 97969
    num_examples: 1
  - name: validation
    num_bytes: 97845
    num_examples: 1
  download_size: 28721
  dataset_size: 293536
- config_name: us_births
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 29923
    num_examples: 1
  - name: test
    num_bytes: 30171
    num_examples: 1
  - name: validation
    num_bytes: 30047
    num_examples: 1
  download_size: 16332
  dataset_size: 90141
- config_name: solar_4_seconds
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 30513083
    num_examples: 1
  - name: test
    num_bytes: 30513578
    num_examples: 1
  - name: validation
    num_bytes: 30513331
    num_examples: 1
  download_size: 794502
  dataset_size: 91539992
- config_name: wind_4_seconds
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 30512774
    num_examples: 1
  - name: test
    num_bytes: 30513269
    num_examples: 1
  - name: validation
    num_bytes: 30513021
    num_examples: 1
  download_size: 2226184
  dataset_size: 91539064
- config_name: rideshare
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence:
      sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 4249051
    num_examples: 156
  - name: test
    num_bytes: 5161435
    num_examples: 156
  - name: validation
    num_bytes: 4705243
    num_examples: 156
  download_size: 1031826
  dataset_size: 14115729
- config_name: oikolab_weather
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 3299142
    num_examples: 8
  - name: test
    num_bytes: 3302310
    num_examples: 8
  - name: validation
    num_bytes: 3300726
    num_examples: 8
  download_size: 1326101
  dataset_size: 9902178
- config_name: temperature_rain
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence:
      sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: train
    num_bytes: 88121466
    num_examples: 422
  - name: test
    num_bytes: 96059286
    num_examples: 422
  - name: validation
    num_bytes: 92090376
    num_examples: 422
  download_size: 25747139
  dataset_size: 276271128
---

# Dataset Card for Monash Time Series Forecasting Repository

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Monash Time Series Forecasting Repository](https://forecastingdata.org/)
- **Repository:** [Monash Time Series Forecasting Repository code repository](https://github.com/rakshitha123/TSForecasting)
- **Paper:** [Monash Time Series Forecasting Archive](https://openreview.net/pdf?id=wEc1mgAjU-)
- **Leaderboard:** [Baseline Results](https://forecastingdata.org/#results)
- **Point of Contact:** [Rakshitha Godahewa](mailto:rakshitha.godahewa@monash.edu)

### Dataset Summary

The first comprehensive time series forecasting repository containing datasets of related time series to facilitate the evaluation of global forecasting models. All datasets are intended to use only for research purpose. Our repository contains 30 datasets including both publicly available time series datasets (in different formats) and datasets curated by us. Many datasets have different versions based on the frequency and the inclusion of missing values, making the total number of dataset variations to 58. Furthermore, it includes both real-world and competition time series datasets covering varied domains.

The following table shows a list of datasets available:

| Name                          | Domain    | No. of series | Freq.  | Pred. Len. | Source                                                                                                                              |
|-------------------------------|-----------|---------------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| weather                       | Nature    | 3010          | 1D     | 30         | [Sparks et al., 2020](https://cran.r-project.org/web/packages/bomrang)                                                              |
| tourism_yearly                | Tourism   | 1311          | 1Y     | 4          | [Athanasopoulos et al., 2011](https://doi.org/10.1016/j.ijforecast.2010.04.009)                                                     |
| tourism_quarterly             | Tourism   | 1311          | 1Q-JAN | 8          | [Athanasopoulos et al., 2011](https://doi.org/10.1016/j.ijforecast.2010.04.009)                                                     |
| tourism_monthly               | Tourism   | 1311          | 1M     | 24         | [Athanasopoulos et al., 2011](https://doi.org/10.1016/j.ijforecast.2010.04.009)                                                     |
| cif_2016                      | Banking   | 72            | 1M     | 12         | [Stepnicka and Burda, 2017](https://doi.org/10.1109/FUZZ-IEEE.2017.8015455)                                                         |
| london_smart_meters           | Energy    | 5560          | 30T    | 60         | [Jean-Michel, 2019](https://www.kaggle.com/jeanmidev/smart-meters-in-london)                                                        |
| australian_electricity_demand | Energy    | 5             | 30T    | 60         | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU-)                                                                    |
| wind_farms_minutely           | Energy    | 339           | 1T     | 60         | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- )                                                                   |
| bitcoin                       | Economic  | 18            | 1D     | 30         | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- )                                                                   |
| pedestrian_counts             | Transport | 66            | 1H     | 48         | [City of Melbourne, 2020](https://data.melbourne.vic.gov.au/Transport/Pedestrian-Counting-System-Monthly-counts-per-hour/b2ak-trbp) |
| vehicle_trips                 | Transport | 329           | 1D     | 30         | [fivethirtyeight, 2015](https://github.com/fivethirtyeight/uber-tlc-foil-response)                                                  |
| kdd_cup_2018                  | Nature    | 270           | 1H     | 48         | [KDD Cup, 2018](https://www.kdd.org/kdd2018/kdd-cup)                                                                                |
| nn5_daily                     | Banking   | 111           | 1D     | 56         | [Ben Taieb et al., 2012](https://doi.org/10.1016/j.eswa.2012.01.039)                                                                |
| nn5_weekly                    | Banking   | 111           | 1W-MON | 8          | [Ben Taieb et al., 2012](https://doi.org/10.1016/j.eswa.2012.01.039)                                                                |
| kaggle_web_traffic            | Web       | 145063        | 1D     | 59         | [Google, 2017](https://www.kaggle.com/c/web-traffic-time-series-forecasting)                                                        |
| kaggle_web_traffic_weekly     | Web       | 145063        | 1W-WED | 8          | [Google, 2017](https://www.kaggle.com/c/web-traffic-time-series-forecasting)                                                        |
| solar_10_minutes              | Energy    | 137           | 10T    | 60         | [Solar, 2020](https://www.nrel.gov/grid/solar-power-data.html)                                                                      |
| solar_weekly                  | Energy    | 137           | 1W-SUN | 5          | [Solar, 2020](https://www.nrel.gov/grid/solar-power-data.html)                                                                      |
| car_parts                     | Sales     | 2674          | 1M     | 12         | [Hyndman, 2015](https://cran.r-project.org/web/packages/expsmooth/)                                                                 |
| fred_md                       | Economic  | 107           | 1M     | 12         | [McCracken and Ng, 2016](https://doi.org/10.1080/07350015.2015.1086655)                                                             |
| traffic_hourly                | Transport | 862           | 1H     | 48         | [Caltrans, 2020](http://pems.dot.ca.gov/)                                                                                           |
| traffic_weekly                | Transport | 862           | 1W-WED | 8          | [Caltrans, 2020](http://pems.dot.ca.gov/)                                                                                           |
| hospital                      | Health    | 767           | 1M     | 12         | [Hyndman, 2015](https://cran.r-project.org/web/packages/expsmooth/)                                                                 |
| covid_deaths                  | Health    | 266           | 1D     | 30         | [Johns Hopkins University, 2020](https://github.com/CSSEGISandData/COVID-19)                                                        |
| sunspot                       | Nature    | 1             | 1D     | 30         | [Sunspot, 2015](http://www.sidc.be/silso/newdataset)                                                                                |
| saugeenday                    | Nature    | 1             | 1D     | 30         | [McLeod and Gweon, 2013](http://www.jenvstat.org/v04/i11)                                                                           |
| us_births                     | Health    | 1             | 1D     | 30         | [Pruim et al., 2020](https://cran.r-project.org/web/packages/mosaicData)                                                            |
| solar_4_seconds               | Energy    | 1             | 4S     | 60         | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- )                                                                   |
| wind_4_seconds                | Energy    | 1             | 4S     | 60         | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- )                                                                   |
| rideshare                     | Transport | 2304          | 1H     | 48         | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- )                                                                   |
| oikolab_weather               | Nature    | 8             | 1H     | 48         | [Oikolab](https://oikolab.com/)                                                                                                     |
| temperature_rain              | Nature    | 32072         | 1D     | 30         | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- )      


### Dataset Usage

To load a particular dataset just specify its name from the table above e.g.:

```python
load_dataset("monash_tsf", "nn5_daily")
```
> Notes:
> - Data might contain missing values as in the original datasets.
> - The prediction length is either specified in the dataset or a default value depending on the frequency is used as in the original repository benchmark.


### Supported Tasks and Leaderboards

#### `time-series-forecasting`

##### `univariate-time-series-forecasting`

The univariate time series forecasting tasks involves learning the future one dimensional `target` values of a time series in a dataset for some `prediction_length` time steps. The performance of the forecast models can then be validated via the ground truth in the `validation` split and tested via the `test` split.

##### `multivariate-time-series-forecasting`

The multivariate time series forecasting task involves learning the future vector of `target` values of a time series in a dataset for some `prediction_length` time steps. Similar to the univariate setting the performance of a multivariate model can be validated via the ground truth in the `validation` split and tested via the `test` split.

### Languages

## Dataset Structure

### Data Instances

A sample from the training set is provided below:

```python
{
  'start': datetime.datetime(2012, 1, 1, 0, 0),
  'target': [14.0, 18.0, 21.0, 20.0, 22.0, 20.0, ...],
  'feat_static_cat': [0], 
  'feat_dynamic_real': [[0.3, 0.4], [0.1, 0.6], ...],
  'item_id': '0'
}
```

### Data Fields

For the univariate regular time series each series has the following keys:

* `start`: a datetime of the first entry of each time series in the dataset
* `target`: an array[float32] of the actual target values
* `feat_static_cat`: an array[uint64] which contains a categorical identifier of each time series in the dataset
* `feat_dynamic_real`: optional array of covariate features
* `item_id`: a string identifier of each time series in a dataset for reference

For the multivariate time series the `target` is a vector of the multivariate dimension for each time point.

### Data Splits

The datasets are split in time depending on the prediction length specified in the datasets. In particular for each time series in a dataset there is a prediction length window of the future in the validation split and another prediction length more in the test split.


## Dataset Creation

### Curation Rationale

To facilitate the evaluation of global forecasting models. All datasets in our repository are intended for research purposes and to evaluate the performance of new forecasting algorithms.

### Source Data

#### Initial Data Collection and Normalization

Out of the 30 datasets, 23 were already publicly available in different platforms with different data formats. The original sources of all datasets are mentioned in the datasets table above.

After extracting and curating these datasets, we analysed them individually to identify the datasets containing series with different frequencies and missing observations. Nine datasets contain time series belonging to different frequencies and the archive contains a separate dataset per each frequency.

#### Who are the source language producers?

The data comes from the datasets listed in the table above.

### Annotations

#### Annotation process

The annotations come from the datasets listed in the table above.

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

* [Rakshitha Godahewa](mailto:rakshitha.godahewa@monash.edu)
* [Christoph Bergmeir](mailto:christoph.bergmeir@monash.edu)
* [Geoff Webb](mailto:geoff.webb@monash.edu)
* [Rob Hyndman](mailto:rob.hyndman@monash.edu)
* [Pablo Montero-Manso](mailto:pablo.monteromanso@sydney.edu.au)

### Licensing Information

[Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/legalcode)

### Citation Information

```tex
@InProceedings{godahewa2021monash,
    author = "Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo",
    title = "Monash Time Series Forecasting Archive",
    booktitle = "Neural Information Processing Systems Track on Datasets and Benchmarks",
    year = "2021",
    note = "forthcoming"
}
```

### Contributions

Thanks to [@kashif](https://github.com/kashif) for adding this dataset.