File size: 31,241 Bytes
9ce215a ee36dd6 0a5a3d5 9ce215a 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 1dd0c68 9982f17 9ce215a 9982f17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
---
annotations_creators:
- no-annotation
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: Monash Time Series Forecasting Repository
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: weather
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 176893738
num_examples: 3010
- name: test
num_bytes: 177638713
num_examples: 3010
- name: validation
num_bytes: 177266226
num_examples: 3010
download_size: 38820451
dataset_size: 531798677
- config_name: tourism_yearly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 54264
num_examples: 518
- name: test
num_bytes: 71358
num_examples: 518
- name: validation
num_bytes: 62811
num_examples: 518
download_size: 36749
dataset_size: 188433
- config_name: tourism_quarterly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 162738
num_examples: 427
- name: test
num_bytes: 190920
num_examples: 427
- name: validation
num_bytes: 176829
num_examples: 427
download_size: 93833
dataset_size: 530487
- config_name: tourism_monthly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 391518
num_examples: 366
- name: test
num_bytes: 463986
num_examples: 366
- name: validation
num_bytes: 427752
num_examples: 366
download_size: 199791
dataset_size: 1283256
- config_name: cif_2016
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 24731
num_examples: 72
- name: test
num_bytes: 31859
num_examples: 72
- name: validation
num_bytes: 28295
num_examples: 72
download_size: 53344
dataset_size: 84885
- config_name: london_smart_meters
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 684386194
num_examples: 5560
- name: test
num_bytes: 687138394
num_examples: 5560
- name: validation
num_bytes: 685762294
num_examples: 5560
download_size: 219673439
dataset_size: 2057286882
- config_name: australian_electricity_demand
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 4763162
num_examples: 5
- name: test
num_bytes: 4765637
num_examples: 5
- name: validation
num_bytes: 4764400
num_examples: 5
download_size: 5770526
dataset_size: 14293199
- config_name: wind_farms_minutely
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 710078918
num_examples: 339
- name: test
num_bytes: 710246723
num_examples: 339
- name: validation
num_bytes: 710162820
num_examples: 339
download_size: 71383130
dataset_size: 2130488461
- config_name: bitcoin
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 336511
num_examples: 18
- name: test
num_bytes: 340966
num_examples: 18
- name: validation
num_bytes: 338738
num_examples: 18
download_size: 220403
dataset_size: 1016215
- config_name: pedestrian_counts
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 12897120
num_examples: 66
- name: test
num_bytes: 12923256
num_examples: 66
- name: validation
num_bytes: 12910188
num_examples: 66
download_size: 4587054
dataset_size: 38730564
- config_name: vehicle_trips
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 105261
num_examples: 329
- name: test
num_bytes: 186688
num_examples: 329
- name: validation
num_bytes: 145974
num_examples: 329
download_size: 44914
dataset_size: 437923
- config_name: kdd_cup_2018
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 12040046
num_examples: 270
- name: test
num_bytes: 12146966
num_examples: 270
- name: validation
num_bytes: 12093506
num_examples: 270
download_size: 2456948
dataset_size: 36280518
- config_name: nn5_daily
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 314828
num_examples: 111
- name: test
num_bytes: 366110
num_examples: 111
- name: validation
num_bytes: 340469
num_examples: 111
download_size: 287708
dataset_size: 1021407
- config_name: nn5_weekly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 48344
num_examples: 111
- name: test
num_bytes: 55670
num_examples: 111
- name: validation
num_bytes: 52007
num_examples: 111
download_size: 62043
dataset_size: 156021
- config_name: kaggle_web_traffic
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 415494391
num_examples: 145063
- name: test
num_bytes: 486103806
num_examples: 145063
- name: validation
num_bytes: 450799098
num_examples: 145063
download_size: 145485324
dataset_size: 1352397295
- config_name: kaggle_web_traffic_weekly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 64242469
num_examples: 145063
- name: test
num_bytes: 73816627
num_examples: 145063
- name: validation
num_bytes: 69029548
num_examples: 145063
download_size: 28930900
dataset_size: 207088644
- config_name: solar_10_minutes
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 29640033
num_examples: 137
- name: test
num_bytes: 29707848
num_examples: 137
- name: validation
num_bytes: 29673941
num_examples: 137
download_size: 4559353
dataset_size: 89021822
- config_name: solar_weekly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 28614
num_examples: 137
- name: test
num_bytes: 34265
num_examples: 137
- name: validation
num_bytes: 31439
num_examples: 137
download_size: 24375
dataset_size: 94318
- config_name: car_parts
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 396653
num_examples: 2674
- name: test
num_bytes: 661379
num_examples: 2674
- name: validation
num_bytes: 529016
num_examples: 2674
download_size: 39656
dataset_size: 1587048
- config_name: fred_md
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 314514
num_examples: 107
- name: test
num_bytes: 325107
num_examples: 107
- name: validation
num_bytes: 319811
num_examples: 107
download_size: 169107
dataset_size: 959432
- config_name: traffic_hourly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 62071974
num_examples: 862
- name: test
num_bytes: 62413326
num_examples: 862
- name: validation
num_bytes: 62242650
num_examples: 862
download_size: 22868806
dataset_size: 186727950
- config_name: traffic_weekly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 344154
num_examples: 862
- name: test
num_bytes: 401046
num_examples: 862
- name: validation
num_bytes: 372600
num_examples: 862
download_size: 245126
dataset_size: 1117800
- config_name: hospital
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 217625
num_examples: 767
- name: test
num_bytes: 293558
num_examples: 767
- name: validation
num_bytes: 255591
num_examples: 767
download_size: 78110
dataset_size: 766774
- config_name: covid_deaths
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 176352
num_examples: 266
- name: test
num_bytes: 242187
num_examples: 266
- name: validation
num_bytes: 209270
num_examples: 266
download_size: 27335
dataset_size: 627809
- config_name: sunspot
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 304726
num_examples: 1
- name: test
num_bytes: 304974
num_examples: 1
- name: validation
num_bytes: 304850
num_examples: 1
download_size: 68865
dataset_size: 914550
- config_name: saugeenday
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 97722
num_examples: 1
- name: test
num_bytes: 97969
num_examples: 1
- name: validation
num_bytes: 97845
num_examples: 1
download_size: 28721
dataset_size: 293536
- config_name: us_births
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 29923
num_examples: 1
- name: test
num_bytes: 30171
num_examples: 1
- name: validation
num_bytes: 30047
num_examples: 1
download_size: 16332
dataset_size: 90141
- config_name: solar_4_seconds
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 30513083
num_examples: 1
- name: test
num_bytes: 30513578
num_examples: 1
- name: validation
num_bytes: 30513331
num_examples: 1
download_size: 794502
dataset_size: 91539992
- config_name: wind_4_seconds
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 30512774
num_examples: 1
- name: test
num_bytes: 30513269
num_examples: 1
- name: validation
num_bytes: 30513021
num_examples: 1
download_size: 2226184
dataset_size: 91539064
- config_name: rideshare
features:
- name: start
dtype: timestamp[s]
- name: target
sequence:
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 4249051
num_examples: 156
- name: test
num_bytes: 5161435
num_examples: 156
- name: validation
num_bytes: 4705243
num_examples: 156
download_size: 1031826
dataset_size: 14115729
- config_name: oikolab_weather
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 3299142
num_examples: 8
- name: test
num_bytes: 3302310
num_examples: 8
- name: validation
num_bytes: 3300726
num_examples: 8
download_size: 1326101
dataset_size: 9902178
- config_name: temperature_rain
features:
- name: start
dtype: timestamp[s]
- name: target
sequence:
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 88121466
num_examples: 422
- name: test
num_bytes: 96059286
num_examples: 422
- name: validation
num_bytes: 92090376
num_examples: 422
download_size: 25747139
dataset_size: 276271128
---
# Dataset Card for Monash Time Series Forecasting Repository
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Monash Time Series Forecasting Repository](https://forecastingdata.org/)
- **Repository:** [Monash Time Series Forecasting Repository code repository](https://github.com/rakshitha123/TSForecasting)
- **Paper:** [Monash Time Series Forecasting Archive](https://openreview.net/pdf?id=wEc1mgAjU-)
- **Leaderboard:** [Baseline Results](https://forecastingdata.org/#results)
- **Point of Contact:** [Rakshitha Godahewa](mailto:rakshitha.godahewa@monash.edu)
### Dataset Summary
The first comprehensive time series forecasting repository containing datasets of related time series to facilitate the evaluation of global forecasting models. All datasets are intended to use only for research purpose. Our repository contains 30 datasets including both publicly available time series datasets (in different formats) and datasets curated by us. Many datasets have different versions based on the frequency and the inclusion of missing values, making the total number of dataset variations to 58. Furthermore, it includes both real-world and competition time series datasets covering varied domains.
The following table shows a list of datasets available:
| Name | Domain | No. of series | Freq. | Pred. Len. | Source |
|-------------------------------|-----------|---------------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| weather | Nature | 3010 | 1D | 30 | [Sparks et al., 2020](https://cran.r-project.org/web/packages/bomrang) |
| tourism_yearly | Tourism | 1311 | 1Y | 4 | [Athanasopoulos et al., 2011](https://doi.org/10.1016/j.ijforecast.2010.04.009) |
| tourism_quarterly | Tourism | 1311 | 1Q-JAN | 8 | [Athanasopoulos et al., 2011](https://doi.org/10.1016/j.ijforecast.2010.04.009) |
| tourism_monthly | Tourism | 1311 | 1M | 24 | [Athanasopoulos et al., 2011](https://doi.org/10.1016/j.ijforecast.2010.04.009) |
| cif_2016 | Banking | 72 | 1M | 12 | [Stepnicka and Burda, 2017](https://doi.org/10.1109/FUZZ-IEEE.2017.8015455) |
| london_smart_meters | Energy | 5560 | 30T | 60 | [Jean-Michel, 2019](https://www.kaggle.com/jeanmidev/smart-meters-in-london) |
| australian_electricity_demand | Energy | 5 | 30T | 60 | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU-) |
| wind_farms_minutely | Energy | 339 | 1T | 60 | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- ) |
| bitcoin | Economic | 18 | 1D | 30 | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- ) |
| pedestrian_counts | Transport | 66 | 1H | 48 | [City of Melbourne, 2020](https://data.melbourne.vic.gov.au/Transport/Pedestrian-Counting-System-Monthly-counts-per-hour/b2ak-trbp) |
| vehicle_trips | Transport | 329 | 1D | 30 | [fivethirtyeight, 2015](https://github.com/fivethirtyeight/uber-tlc-foil-response) |
| kdd_cup_2018 | Nature | 270 | 1H | 48 | [KDD Cup, 2018](https://www.kdd.org/kdd2018/kdd-cup) |
| nn5_daily | Banking | 111 | 1D | 56 | [Ben Taieb et al., 2012](https://doi.org/10.1016/j.eswa.2012.01.039) |
| nn5_weekly | Banking | 111 | 1W-MON | 8 | [Ben Taieb et al., 2012](https://doi.org/10.1016/j.eswa.2012.01.039) |
| kaggle_web_traffic | Web | 145063 | 1D | 59 | [Google, 2017](https://www.kaggle.com/c/web-traffic-time-series-forecasting) |
| kaggle_web_traffic_weekly | Web | 145063 | 1W-WED | 8 | [Google, 2017](https://www.kaggle.com/c/web-traffic-time-series-forecasting) |
| solar_10_minutes | Energy | 137 | 10T | 60 | [Solar, 2020](https://www.nrel.gov/grid/solar-power-data.html) |
| solar_weekly | Energy | 137 | 1W-SUN | 5 | [Solar, 2020](https://www.nrel.gov/grid/solar-power-data.html) |
| car_parts | Sales | 2674 | 1M | 12 | [Hyndman, 2015](https://cran.r-project.org/web/packages/expsmooth/) |
| fred_md | Economic | 107 | 1M | 12 | [McCracken and Ng, 2016](https://doi.org/10.1080/07350015.2015.1086655) |
| traffic_hourly | Transport | 862 | 1H | 48 | [Caltrans, 2020](http://pems.dot.ca.gov/) |
| traffic_weekly | Transport | 862 | 1W-WED | 8 | [Caltrans, 2020](http://pems.dot.ca.gov/) |
| hospital | Health | 767 | 1M | 12 | [Hyndman, 2015](https://cran.r-project.org/web/packages/expsmooth/) |
| covid_deaths | Health | 266 | 1D | 30 | [Johns Hopkins University, 2020](https://github.com/CSSEGISandData/COVID-19) |
| sunspot | Nature | 1 | 1D | 30 | [Sunspot, 2015](http://www.sidc.be/silso/newdataset) |
| saugeenday | Nature | 1 | 1D | 30 | [McLeod and Gweon, 2013](http://www.jenvstat.org/v04/i11) |
| us_births | Health | 1 | 1D | 30 | [Pruim et al., 2020](https://cran.r-project.org/web/packages/mosaicData) |
| solar_4_seconds | Energy | 1 | 4S | 60 | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- ) |
| wind_4_seconds | Energy | 1 | 4S | 60 | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- ) |
| rideshare | Transport | 2304 | 1H | 48 | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- ) |
| oikolab_weather | Nature | 8 | 1H | 48 | [Oikolab](https://oikolab.com/) |
| temperature_rain | Nature | 32072 | 1D | 30 | [Godahewa et al. 2021](https://openreview.net/pdf?id=wEc1mgAjU- )
### Dataset Usage
To load a particular dataset just specify its name from the table above e.g.:
```python
load_dataset("monash_tsf", "nn5_daily")
```
> Notes:
> - Data might contain missing values as in the original datasets.
> - The prediction length is either specified in the dataset or a default value depending on the frequency is used as in the original repository benchmark.
### Supported Tasks and Leaderboards
#### `time-series-forecasting`
##### `univariate-time-series-forecasting`
The univariate time series forecasting tasks involves learning the future one dimensional `target` values of a time series in a dataset for some `prediction_length` time steps. The performance of the forecast models can then be validated via the ground truth in the `validation` split and tested via the `test` split.
##### `multivariate-time-series-forecasting`
The multivariate time series forecasting task involves learning the future vector of `target` values of a time series in a dataset for some `prediction_length` time steps. Similar to the univariate setting the performance of a multivariate model can be validated via the ground truth in the `validation` split and tested via the `test` split.
### Languages
## Dataset Structure
### Data Instances
A sample from the training set is provided below:
```python
{
'start': datetime.datetime(2012, 1, 1, 0, 0),
'target': [14.0, 18.0, 21.0, 20.0, 22.0, 20.0, ...],
'feat_static_cat': [0],
'feat_dynamic_real': [[0.3, 0.4], [0.1, 0.6], ...],
'item_id': '0'
}
```
### Data Fields
For the univariate regular time series each series has the following keys:
* `start`: a datetime of the first entry of each time series in the dataset
* `target`: an array[float32] of the actual target values
* `feat_static_cat`: an array[uint64] which contains a categorical identifier of each time series in the dataset
* `feat_dynamic_real`: optional array of covariate features
* `item_id`: a string identifier of each time series in a dataset for reference
For the multivariate time series the `target` is a vector of the multivariate dimension for each time point.
### Data Splits
The datasets are split in time depending on the prediction length specified in the datasets. In particular for each time series in a dataset there is a prediction length window of the future in the validation split and another prediction length more in the test split.
## Dataset Creation
### Curation Rationale
To facilitate the evaluation of global forecasting models. All datasets in our repository are intended for research purposes and to evaluate the performance of new forecasting algorithms.
### Source Data
#### Initial Data Collection and Normalization
Out of the 30 datasets, 23 were already publicly available in different platforms with different data formats. The original sources of all datasets are mentioned in the datasets table above.
After extracting and curating these datasets, we analysed them individually to identify the datasets containing series with different frequencies and missing observations. Nine datasets contain time series belonging to different frequencies and the archive contains a separate dataset per each frequency.
#### Who are the source language producers?
The data comes from the datasets listed in the table above.
### Annotations
#### Annotation process
The annotations come from the datasets listed in the table above.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
* [Rakshitha Godahewa](mailto:rakshitha.godahewa@monash.edu)
* [Christoph Bergmeir](mailto:christoph.bergmeir@monash.edu)
* [Geoff Webb](mailto:geoff.webb@monash.edu)
* [Rob Hyndman](mailto:rob.hyndman@monash.edu)
* [Pablo Montero-Manso](mailto:pablo.monteromanso@sydney.edu.au)
### Licensing Information
[Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/legalcode)
### Citation Information
```tex
@InProceedings{godahewa2021monash,
author = "Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo",
title = "Monash Time Series Forecasting Archive",
booktitle = "Neural Information Processing Systems Track on Datasets and Benchmarks",
year = "2021",
note = "forthcoming"
}
```
### Contributions
Thanks to [@kashif](https://github.com/kashif) for adding this dataset. |