Datasets:
File size: 5,777 Bytes
af2a473 bdd3379 af2a473 d928dd3 1fab81e d928dd3 bdd3379 d928dd3 62d03ac fce9678 6c3ce28 fce9678 24c5567 f8b6fb2 24c5567 fce9678 d928dd3 62d03ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
license: apache-2.0
language:
- en
---
# Whatscooking.restaurants
## Overview
This dataset provides detailed information about various restaurants, including their location, cuisine, ratings, and other attributes. It is particularly useful for applications in food and beverage industry analysis, recommendation systems, and geographical studies.
## Dataset Structure
Each record in the dataset represents a single restaurant and contains the following fields:
- `_id`: A unique identifier for the restaurant record.
- `address`: An object containing the building number, coordinates, street, and zipcode of the restaurant.
- `borough`: The borough in which the restaurant is located.
- `cuisine`: The type of cuisine offered by the restaurant.
- `name`: The name of the restaurant.
- `restaurant_id`: A unique restaurant ID.
- `location`: Geolocation data of the restaurant, in `Point` format.
- `stars`: The star rating of the restaurant.
- `review_count`: Number of reviews the restaurant has received.
- `attributes`: Various attributes of the restaurant, such as `GoodForKids`, `RestaurantsDelivery`, `NoiseLevel`, etc.
- `PriceRange`: The price range of the restaurant.
- `OutdoorSeating`: Indicates whether the restaurant has outdoor seating.
- `HappyHour`: Indicates whether the restaurant offers a happy hour.
- `TakeOut`: Indicates whether the restaurant offers takeout services.
- `DogsAllowed`: Indicates whether dogs are allowed in the restaurant.
- `embedding`: A list of numerical values representing the embedding of the menu and attributes.
## Field Details
### Address Object
- `building`: Building number.
- `coord`: Array containing longitude and latitude.
- `street`: Street name.
- `zipcode`: Postal code.
### Location Object
- `type`: Type of the geolocation data, typically `"Point"`.
- `coordinates`: Array containing longitude and latitude.
### Attributes Object
- This object contains several boolean and string fields representing various features and services of the restaurant, such as `GoodForKids`, `RestaurantsDelivery`, `NoiseLevel`, etc.
### Embedding Field
- Generated by OpenAI `text-embedding-3-small` with 256 elements. This field consists of an array of floating point numbers. It represents a combined embedding of the restaurant's menu and attributes, useful for similarity searches and machine learning applications.
## Usage
This dataset can be utilized for various purposes, including but not limited to:
- Analysis of restaurant trends in different boroughs.
- Development of recommendation systems based on cuisine, attributes, and location.
- Geospatial analysis of restaurant distributions.
## Notes
- The dataset is provided "as is" and is intended for informational purposes only.
- Users are advised to consider the implications of the embedded data and its use in their applications.
### Sample Document
```
{
"_id": {
"$oid": "6095a34a7c34416a90d3209e"
},
"address": {
"building": "17",
"coord": [
-74.1350211,
40.6369042
],
"street": "Harrison Avenue",
"zipcode": "10302"
},
"borough": "Staten Island",
"cuisine": "American",
"name": "Buddy'S Wonder Bar",
"restaurant_id": "40367442",
"location": {
"type": "Point",
"coordinates": [
-74.1350211,
40.6369042
]
},
"stars": 3.5,
"review_count": 62,
"attributes": {
"BikeParking": "True",
"RestaurantsReservations": "True",
"RestaurantsTableService": "True",
"RestaurantsAttire": "'casual'",
"Alcohol": "'beer_and_wine'",
"RestaurantsGoodForGroups": "True",
"GoodForKids": "True",
"BusinessParking": "{'garage': False, 'street': True, 'validated': False, 'lot': True, 'valet': False}",
"WiFi": "u'free'",
"HasTV": "True",
"RestaurantsDelivery": "True",
"WheelchairAccessible": "True",
"NoiseLevel": "u'average'",
"GoodForMeal": "{'dessert': False, 'latenight': False, 'lunch': True, 'dinner': True, 'brunch': False, 'breakfast': False}",
"Ambience": "{'romantic': False, 'intimate': False, 'classy': False, 'hipster': False, 'divey': False, 'touristy': False, 'trendy': False, 'upscale': False, 'casual': True}"
},
"menu": [
"Grilled cheese sandwich",
"Baked potato",
"Lasagna",
"Mozzarella sticks",
"Mac & cheese",
"Chicken fingers",
"Mashed potatoes",
"Chicken pot pie",
"Green salad",
"Meatloaf",
"Tomato soup",
"Onion rings"
],
"PriceRange": 2,
"OutdoorSeating": true,
"HappyHour": null,
"TakeOut": true,
"DogsAllowed": true,
"embedding": [
-0.11977468,
-0.02157107,
...
]
}
```
## Ingest Data
The small script `ingest.py` can be used to load the data into your MongoDB Atlas cluster.
```
pip install pymongo
pip install datasets
## export MONGODB_ATLAS_URI=<your atlas uri>
```
The `ingest.py`:
```python
import os
from pymongo import MongoClient
import datasets
from datasets import load_dataset
from bson import json_util
uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
db_name = 'whatscooking'
collection_name = 'restaurants'
restaurants_collection = client[db_name][collection_name]
dataset = load_dataset("MongoDB/whatscooking.restaurants")
insert_data = []
for restaurant in dataset['train']:
doc_restaurant = json_util.loads(json_util.dumps(restaurant))
insert_data.append(doc_restaurant)
if len(insert_data) == 1000:
restaurants_collection.insert_many(insert_data)
print("1000 records ingested")
insert_data = []
if len(insert_data) > 0:
restaurants_collection.insert_many(insert_data)
insert_data = []
print("Data Ingested")
```
## Contact
For any queries or further information regarding this dataset, please open a disucssion. |