--- license: mit library_name: prompt-templates tags: - prompts --- ## Sharing prompts linked to datasets This repo illustrates how you can use the `prompt_templates` library to load prompts from YAML files in dataset repositories. LLMs are increasingly used to help create datasets, for example for quality filtering or synthetic text generation. The prompts used for creating a dataset are currently unsystematically shared on GitHub ([example](https://github.com/huggingface/cosmopedia/tree/main/prompts)), referenced in dataset cards ([example](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu#annotation)), or stored in .txt files ([example](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier/blob/main/utils/prompt.txt)), hidden in paper appendices or not shared at all. This makes reproducibility unnecessarily difficult. To facilitate reproduction, these dataset prompts can be shared in YAML files in HF dataset repositories together with metadata on generation parameters, model_ids etc. ### Example: FineWeb-Edu The FineWeb-Edu dataset was created by prompting `Meta-Llama-3-70B-Instruct` to score the educational value of web texts. The authors provide the prompt in a .txt file. When provided in a YAML file in the dataset repo, the prompt can easily be loaded and supplemented with metadata like the model_id or generation parameters for easy reproducibility. ```python #!pip install hf_hub_prompts from hf_hub_prompts import download_prompt import torch from transformers import pipeline prompt_template = download_prompt(repo_id="MoritzLaurer/dataset_prompts", filename="fineweb-edu-prompt.yaml", repo_type="dataset") # populate the prompt text_to_score = "The quick brown fox jumps over the lazy dog" messages = prompt_template.populate_template(text_to_score=text_to_score) # test prompt with local llama model_id = "meta-llama/Llama-3.2-1B-Instruct" # prompt was original created for meta-llama/Meta-Llama-3-70B-Instruct pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) outputs = pipe( messages, max_new_tokens=512, ) print(outputs[0]["generated_text"][-1]) ```