|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MAGICDATA Mandarin Chinese Read Speech Corpus.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
|
|
|
|
_CITATION = """\ |
|
@misc{magicdata_2019, |
|
title={MAGICDATA Mandarin Chinese Read Speech Corpus}, |
|
url={https://openslr.org/68/}, |
|
publisher={Magic Data Technology Co., Ltd.}, |
|
year={2019}, |
|
month={May}} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The corpus by Magic Data Technology Co., Ltd. , containing 755 hours of scripted read speech data |
|
from 1080 native speakers of the Mandarin Chinese spoken in mainland China. |
|
The sentence transcription accuracy is higher than 98%. |
|
""" |
|
|
|
_URL = "https://openslr.org/68/" |
|
_DL_URL = "http://www.openslr.org/resources/68/" |
|
|
|
|
|
_DL_URLS = { |
|
"train": _DL_URL + "train_set.tar.gz", |
|
"dev": _DL_URL + "dev_set.tar.gz", |
|
"test": _DL_URL + "test_set.tar.gz", |
|
} |
|
|
|
|
|
class MMCRSCConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for MMCRSC.""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
|
|
super(MMCRSCConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs) |
|
|
|
|
|
class MMCRSC(datasets.GeneratorBasedBuilder): |
|
"""MMCRSC dataset.""" |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 256 |
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
"speaker_id": datasets.Value("int64"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download(_DL_URLS) |
|
|
|
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("train"), |
|
"files": dl_manager.iter_archive(archive_path["train"]), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("dev"), |
|
"files": dl_manager.iter_archive(archive_path["dev"]), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("test"), |
|
"files": dl_manager.iter_archive(archive_path["test"]), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files, local_extracted_archive): |
|
"""Generate examples from a LibriSpeech archive_path.""" |
|
audio_data = {} |
|
transcripts = [] |
|
for path, f in files: |
|
if path.endswith(".wav"): |
|
id_ = path.split("/")[-1] |
|
audio_data[id_] = f.read() |
|
elif path.endswith("TRANS.txt"): |
|
for line in f: |
|
if line and (b'.wav' in line): |
|
line = line.decode("utf-8").strip() |
|
id_, speaker_id, transcript = line.split("\t") |
|
audio_file = id_ |
|
audio_file = ( |
|
os.path.join(local_extracted_archive, audio_file) |
|
if local_extracted_archive |
|
else audio_file |
|
) |
|
transcripts.append( |
|
{ |
|
"id": id_, |
|
"speaker_id": speaker_id, |
|
"file": audio_file, |
|
"text": transcript, |
|
} |
|
) |
|
if audio_data: |
|
for key, transcript in enumerate(transcripts): |
|
if transcript["id"] in audio_data: |
|
audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]} |
|
yield key, {"audio": audio, **transcript} |
|
audio_data = {} |
|
transcripts = [] |
|
|
|
|