Datasets:
Size:
100K<n<1M
ArXiv:
Tags:
image-text retrieval
noisy correspondence learning
NCL-specific benchmark
realistic
industry
mobile user interface
License:
File size: 6,121 Bytes
32e7075 11c582c 70a3349 32e7075 70a3349 8cf4bab 32e7075 ca17441 177a7bd ca17441 177a7bd c928cc8 9844e3d 177a7bd 108c685 177a7bd ca17441 0a74f23 945c19d 32e7075 945c19d ca17441 c9e0a9f ca17441 c9e0a9f ca17441 c9e0a9f ca17441 6e6ed4b 6d097e5 6e6ed4b 1e6d0f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: cc-by-nc-4.0
task_categories:
- text-to-image
- image-to-text
- text-retrieval
language:
- zh
- en
- ja
- ru
tags:
- image-text retrieval
- noisy correspondence learning
- NCL-specific benchmark
- realistic
- industry
- mobile user interface
- image-text matching
- image
- text
- npy
- txt
- json
size_categories:
- 100K<n<1M
---
# PC2-NoiseofWeb
This repo releases data introduced in our paper accepted:
> **PC2: Pseudo-Classification Based Pseudo-Captioning for Noisy Correspondence Learning in Cross-Modal Retrieval**
> **Authors**: **[Yue Duan](https://njuyued.github.io/)**, Zhangxuan Gu, Zhenzhe Ying, Lei Qi, Changhua Meng and Yinghuan Shi
- **Quick links:** [[[PDF](https://arxiv.org/pdf/2408.01349)/[Abs](https://arxiv.org/abs/2408.01349)-arXiv | [PDF](https://dl.acm.org/doi/pdf/10.1145/3664647.3680860)/[Abs](https://dl.acm.org/doi/abs/10.1145/3664647.3680860)-Published | [Code](https://github.com/alipay/PC2-NoiseofWeb) | [Video](https://dl.acm.org/doi/suppl/10.1145/3664647.3680860/suppl_file/648-video.mp4) | [Poster/Slides](https://github.com/NJUyued/Posters-Slides-Videos/tree/master/PC2-ACMMM'24) | [文章解读-知乎(Zhihu)](https://zhuanlan.zhihu.com/p/711149124) | [视频解读-bilibili](https://www.bilibili.com/video/BV1zppMezEQe/) | [Dataset download](https://huggingface.co/datasets/NJUyued/NoW/resolve/main/NoW.zip?download=true)]
- 📰 **Latest news:**
- We provide a **video presentation (in chinese)** of this work on [bilibili](https://www.bilibili.com/video/BV1zppMezEQe/).
- We write a **detailed explanation (in chinese)** of this work on [Zhihu](https://zhuanlan.zhihu.com/p/711149124).
- Our paper is accepted by **ACM International Conference on Multimedia (ACM MM) 2024** 🎉🎉. Thanks to users.
## Data Collection
We develop a new dataset named **Noise of Web (NoW)** for NCL. It contains **100K image-text pairs** consisting of **website images** and **multilingual website meta-descriptions** (**98,000 pairs for training, 1,000 for validation, and 1,000 for testing**). NoW has two main characteristics: *without human annotations and the noisy pairs are naturally captured*. The source image data of NoW is obtained by taking screenshots when accessing web pages on mobile user interface (MUI) with 720 X 1280 resolution, and we parse the meta-description field in the HTML source code as the captions. In [NCR](https://github.com/XLearning-SCU/2021-NeurIPS-NCR) (predecessor of NCL), each image in all datasets were preprocessed using Faster-RCNN detector provided by [Bottom-up Attention Model](https://github.com/peteanderson80/bottom-up-attention) to generate 36 region proposals, and each proposal was encoded as a 2048-dimensional feature. Thus, following NCR, we release our the features instead of raw images for fair comparison. However, we can not just use detection methods like Faster-RCNN to extract image features since it is trained on real-world animals and objects on MS-COCO. To tackle this, we adapt [APT](https://openaccess.thecvf.com/content/CVPR2023/papers/Gu_Mobile_User_Interface_Element_Detection_via_Adaptively_Prompt_Tuning_CVPR_2023_paper.pdf) as the detection model since it is trained on MUI data. Then, we capture the 768-dimensional features of top 36 objects for one image. Due to the automated and non-human curated data collection process, the noise in NoW is highly authentic and intrinsic. **The estimated noise ratio of this dataset is nearly 70%**.
<div align=center>
<img width="750px" src="NoW.jpg">
</div>
## Data Structure
```
|-- h5100k_precomp
| |-- dev_caps_bpe.txt
| |-- dev_caps_bert.txt
| |-- dev_caps_jieba.txt
| |-- dev_ids.txt
| |-- dev_ims.npy
| |-- test_caps_bpe.txt
| |-- test_caps_bert.txt
| |-- test_caps_jieba.txt
| |-- test_ids.txt
| |-- test_ims.npy
| |-- train_caps_bpe.txt
| |-- train_caps_bert.txt
| |-- train_caps_jieba.txt
| |-- train_ids.txt
| |-- train_ims.npy
|-- vocab
| |-- now100k_precomp_vocab_bert.json
| |-- now100k_precomp_vocab_bpe.json
| |-- now100k_precomp_vocab_jieba.json
```
Please note that since our raw data contains some sensitive business data, we only provide the **encoded image features** (\*_ims.npy) and the **token ids of the text tokenized**. For tokenizer, we provide [Tokenizers](https://github.com/huggingface/tokenizers) with [BPE](https://huggingface.co/docs/tokenizers/api/models#tokenizers.models.BPE) to produce \*_caps_bpe.txt, [BertTokenizer](https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#berttokenizer) with [bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) pre-trained model to produce \*_caps_bert.txt, and [Jieba](https://github.com/fxsjy/jieba) to produce \*_caps_jieba.txt. **Our vocabulary size of BPETokenizer is 10,000, while BertTokenizer and JiebaTokenizer have a vocabulary size of 32,702 and 56,271 respectively.** (recorded in now100k_precomp_vocab\_\*.txt). \*_ids.txt records the data indexs in the original 500k dataset. In the future, we may process and make the original dataset public.
## Usage
```
# data_path: your dataset name and path
# data_split: {train,dev,test}
# tokenizer: {bpe,bert,jieba}
# vocabulary size of {bpe,bert,jieba} is {10000,32702,56271}
# captions
with open(os.path.join(data_path, "{}_caps_{}.txt".format(data_split, tokenizer))) as f:
for line in f:
captions.append(line.strip())
captions_token = []
for index in range(len(captions)):
caption = captions[index]
tokens = caption.split(',')
caption = []
caption.append(vocab("<start>"))
caption.extend([int(token) for token in tokens if token])
caption.append(vocab("<end>"))
captions_token.append(caption)
# images
images = np.load(os.path.join(data_path, "%s_ims.npy" % data_split))
return captions_token, images
```
Additionally, you can search for code snippets containing the string `now100k_precomp` in `co_train.py`, `data.py`, `evaluation.py`, and `run.py` in [PC2's repo](https://github.com/alipay/PC2-NoiseofWeb) and refer to them to process the NoW dataset for use in your own code.
|