|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Philippine English Text Corpus.""" |
|
|
|
|
|
import os |
|
import datasets |
|
import csv |
|
|
|
|
|
_DESCRIPTION = """\ |
|
PhEnText Detoxed is a large-scale and multi-domain lexical data written in Philippine English text. |
|
The news articles, religious articles and court decisions collated by the original researchers were filtered for toxicity and special characters were further preprocessed. |
|
""" |
|
|
|
_CITATION = """\ |
|
|
|
} |
|
""" |
|
|
|
_TRAIN_DOWNLOAD_URL = "https://huggingface.co/datasets/NLPinas/ph_en_text_detoxed/blob/main/ph_en_text_detoxed_train.csv" |
|
_TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/NLPinas/ph_en_text_detoxed/blob/main/ph_en_text_detoxed_test.csv" |
|
|
|
|
|
class PhEnText(datasets.GeneratorBasedBuilder): |
|
"""Philippine English Text (PhEnText) Corpus.""" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int"), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features |
|
homepage=" ", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) |
|
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""PhEnText examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
|
|
csv_reader = csv.reader( |
|
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True |
|
) |
|
|
|
for id_, row in enumerate(csv_reader): |
|
id, text = row |
|
if row.strip(): |
|
yield id_, {"id": id, "text": text} |
|
else: |
|
yield id_, {"id": id, "text": ""} |