Datasets:
Modalities:
Geospatial
Languages:
English
Size:
1M<n<10M
Tags:
street view imagery
open data
data fusion
urban analytics
GeoAI
volunteered geographic information
License:
File size: 3,898 Bytes
e5b028c c119aaf e5b028c c119aaf 7148711 e5b028c 3ff048d 3697d29 242a365 e5b028c 3ff048d 242a365 f0ace6a 3ff048d 082b66a 3ff048d e5b028c 92922c9 1fddca6 3ff048d 1fddca6 37093d3 1b10973 9037350 1b10973 9037350 1b10973 3ff048d 7148711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: cc-by-sa-4.0
task_categories:
- image-classification
- image-segmentation
- image-feature-extraction
language:
- en
tags:
- street view imagery
- open data
- data fusion
- urban analytics
- GeoAI
- volunteered geographic information
- machine learning
- spatial data infrastructure
- geospatial
size_categories:
- 1M<n<10M
---
# Global Streetscapes
Repository for the tabular portion of the [Global Streetscapes dataset](https://ual.sg/project/global-streetscapes/) by the [Urban Analytics Lab (UAL)](https://ual.sg/) at the National University of Singapore (NUS).
Content breakdown:
* `data/` (37 GB)
* 21 `csv` files with 346 unique features in total and 10 million rows each to characterise the 10 million street-level images in our dataset
* `manual_labels/` (23 GB)
* `train/`
* 8 `csv` files of manual labels for training computer vision models to classify 8 different [contextual characteristics](https://github.com/ualsg/global-streetscapes?tab=readme-ov-file#manually-labelled-subset-for-benchmarking) of a street view image, along with other metadata such as the image's location, city, file path etc.
* `test/`
* 8 `csv` files of manual labels for model testing, along with other metadata such as the image's location, city, file path etc.
* `img/`
* 7 `tar.gz` files containing all images used for training and testing
* `models/` (2.8 GB)
* 8 `ckpt` files storing the trained models
* `cities688.csv` contains basic information for the 688 cities included in the dataset, such as population, continent, image count etc.
* `info.csv` overviews the content of each `csv` file in `/data` and explains the 346 features
This repository has a total size of about 62 GB.
Please follow this [guide](https://huggingface.co/docs/huggingface_hub/guides/download) from huggingface for download instructions. Please avoid using 'git clone' to download the repo as Git stores the files twice and will double the disk space usage to 124+ GB.
We have also provided a script `download_folder.py` to download one folder from this dataset, instead of just a single file or the entire dataset.
To download the imagery portion (10 million images, ~6TB), please follow the code and documentation in our [GitHub repo](https://github.com/ualsg/global-streetscapes).
Our [Wiki](https://github.com/ualsg/global-streetscapes/wiki/2-Download-images) contains instructions and a demo on how to filter the dataset for a subset of data of your interest and download the image files for them.
Read more about this project on [its website](https://ual.sg/project/global-streetscapes/), which includes an overview of this effort together with the background, [paper](https://doi.org/10.1016/j.isprsjprs.2024.06.023), examples, and FAQ.
To cite this work, please refer to the [paper](https://doi.org/10.1016/j.isprsjprs.2024.06.023):
Hou Y, Quintana M, Khomiakov M, Yap W, Ouyang J, Ito K, Wang Z, Zhao T, Biljecki F (2024): Global Streetscapes — A comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics. ISPRS Journal of Photogrammetry and Remote Sensing 215: 216-238. doi:[10.1016/j.isprsjprs.2024.06.023](https://doi.org/10.1016/j.isprsjprs.2024.06.023)
BibTeX:
```
@article{2024_global_streetscapes,
author = {Hou, Yujun and Quintana, Matias and Khomiakov, Maxim and Yap, Winston and Ouyang, Jiani and Ito, Koichi and Wang, Zeyu and Zhao, Tianhong and Biljecki, Filip},
doi = {10.1016/j.isprsjprs.2024.06.023},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
pages = {216-238},
title = {Global Streetscapes -- A comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics},
volume = {215},
year = {2024}
}
```
A free version (postprint / author-accepted manuscript) can be downloaded [here](https://ual.sg/publication/2024-global-streetscapes/). |