from huggingface_hub import HfApi, hf_hub_download def download_folder(repo_id, repo_type, folder_path, local_dir): """ Download an entire folder from a huggingface dataset repository. repo_id : string The ID of the repository (e.g., 'username/repo_name'). repo_type : string Type of the repo, dataset or model. folder_path : string The path to the folder within the repository. local_dir : string Local folder to download the data. This mimics git behaviour """ api = HfApi() # list all files in the repo, keep the ones within folder_path all_files = api.list_repo_files(repo_id, repo_type=repo_type) files_list = [f for f in all_files if f.startswith(folder_path)] # download each of those files for file_path in files_list: hf_hub_download(repo_id=repo_id, repo_type=repo_type, filename=file_path, local_dir=local_dir) # Download entire data/ folder repo_id = "NUS-UAL/global-streetscapes" # you can replace this for other huggingface repos repo_type = "dataset" # required by the API when the repo is a dataset folder_path = "data/" # replace the folder you want within the repo local_dir = "global-streetscapes/" # the local folder in your computer where it will be downloaded # By default, huggingface download them to the .cache/huggingface folder download_folder(repo_id, repo_type, folder_path, local_dir) # Download 2 additional files hf_hub_download(repo_id=repo_id, repo_type=repo_type, filename="cities688.csv", local_dir=local_dir) hf_hub_download(repo_id=repo_id, repo_type=repo_type, filename="info.csv", local_dir=local_dir)