File size: 2,302 Bytes
9f21b95
 
 
 
 
f244190
 
 
 
9f21b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
language:
- ru
tags:
- toxic comments classification
task_categories:
- text-classification
size_categories:
- 10K<n<100K
---

## General concept of the model


Sensitive topics are such topics that have a high chance of initiating a toxic conversation: homophobia, politics, racism, etc. This dataset uses 18 topics. 

More details can be found [in this article ](https://www.aclweb.org/anthology/2021.bsnlp-1.4/) presented at the workshop for Balto-Slavic NLP at the EACL-2021 conference. 
This paper presents the first version of this dataset. Here you can see the last version of the dataset which is significantly larger and also properly filtered.

## Citation

If you find this repository helpful, feel free to cite our publication:

```
@inproceedings{babakov-etal-2021-detecting,
    title = "Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company{'}s Reputation",
    author = "Babakov, Nikolay  and
      Logacheva, Varvara  and
      Kozlova, Olga  and
      Semenov, Nikita  and
      Panchenko, Alexander",
    booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
    month = apr,
    year = "2021",
    address = "Kiyv, Ukraine",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.bsnlp-1.4",
    pages = "26--36",
    abstract = "Not all topics are equally {``}flammable{''} in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.",
}
```