Datasets:
ofai
/

Languages:
German
License:
File size: 12,787 Bytes
8db751b
 
 
 
 
30fbf18
8db751b
30fbf18
18cdefe
8db751b
 
 
 
 
 
 
 
 
 
ffead4a
61ed0f4
e7e37fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ed0f4
 
 
 
 
 
 
 
 
e7e37fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db751b
 
 
 
 
 
 
ffead4a
8db751b
 
 
ffead4a
 
8db751b
 
 
 
 
 
 
 
 
 
 
 
 
b3bfdc8
8db751b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d87c32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db751b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d87c32
 
3a81c61
 
 
 
 
8db751b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3bfdc8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- de
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: one-million-posts-corpus
pretty_name: One Million Posts
dataset_info:
- config_name: posts_labeled
  features:
  - name: ID_Post
    dtype: string
  - name: ID_Parent_Post
    dtype: string
  - name: ID_Article
    dtype: string
  - name: ID_User
    dtype: string
  - name: CreatedAt
    dtype: string
  - name: Status
    dtype: string
  - name: Headline
    dtype: string
  - name: Body
    dtype: string
  - name: PositiveVotes
    dtype: int32
  - name: NegativeVotes
    dtype: int32
  - name: Category
    dtype:
      class_label:
        names:
          '0': ArgumentsUsed
          '1': Discriminating
          '2': Inappropriate
          '3': OffTopic
          '4': PersonalStories
          '5': PossiblyFeedback
          '6': SentimentNegative
          '7': SentimentNeutral
          '8': SentimentPositive
  - name: Value
    dtype: int32
  - name: Fold
    dtype: int32
  splits:
  - name: train
    num_bytes: 13955964
    num_examples: 40567
  download_size: 1329892
  dataset_size: 13955964
- config_name: posts_unlabeled
  features:
  - name: ID_Post
    dtype: string
  - name: ID_Parent_Post
    dtype: string
  - name: ID_Article
    dtype: string
  - name: ID_User
    dtype: string
  - name: CreatedAt
    dtype: string
  - name: Status
    dtype: string
  - name: Headline
    dtype: string
  - name: Body
    dtype: string
  - name: PositiveVotes
    dtype: int32
  - name: NegativeVotes
    dtype: int32
  splits:
  - name: train
    num_bytes: 305770324
    num_examples: 1000000
  download_size: 79296188
  dataset_size: 305770324
- config_name: articles
  features:
  - name: ID_Article
    dtype: string
  - name: Path
    dtype: string
  - name: publishingDate
    dtype: string
  - name: Title
    dtype: string
  - name: Body
    dtype: string
  splits:
  - name: train
    num_bytes: 43529400
    num_examples: 12087
  download_size: 10681288
  dataset_size: 43529400
---

# Dataset Card for One Million Posts Corpus

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://ofai.github.io/million-post-corpus/
- **Repository:** https://github.com/OFAI/million-post-corpus
- **Paper:** https://dl.acm.org/doi/10.1145/3077136.3080711
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

The “One Million Posts” corpus is an annotated data set consisting of user comments posted to an Austrian newspaper website (in German language).

DER STANDARD is an Austrian daily broadsheet newspaper. On the newspaper’s website, there is a discussion section below each news article where readers engage in online discussions. The data set contains a selection of user posts from the 12 month time span from 2015-06-01 to 2016-05-31. There are 11,773 labeled and 1,000,000 unlabeled posts in the data set. The labeled posts were annotated by professional forum moderators employed by the newspaper.

The data set contains the following data for each post:

* Post ID
* Article ID
* Headline (max. 250 characters)
* Main Body (max. 750 characters)
* User ID (the user names used by the website have been re-mapped to new numeric IDs)
* Time stamp
* Parent post (replies give rise to tree-like discussion thread structures)
* Status (online or deleted by a moderator)
* Number of positive votes by other community members
* Number of negative votes by other community members

For each article, the data set contains the following data:

* Article ID
* Publishing date
* Topic Path (e.g.: Newsroom / Sports / Motorsports / Formula 1)
* Title
* Body

Detailed descriptions of the post selection and annotation procedures are given in the paper.

#### Annotated Categories

Potentially undesirable content:

* Sentiment (negative/neutral/positive)
    An important goal is to detect changes in the prevalent sentiment in a discussion, e.g., the location within the fora and the point in time where a turn from positive/neutral sentiment to negative sentiment takes place.
* Off-Topic (yes/no)
    Posts which digress too far from the topic of the corresponding article.
* Inappropriate (yes/no)
    Swearwords, suggestive and obscene language, insults, threats etc.
* Discriminating (yes/no)
    Racist, sexist, misogynistic, homophobic, antisemitic and other misanthropic content.

Neutral content that requires a reaction:

* Feedback (yes/no)
    Sometimes users ask questions or give feedback to the author of the article or the newspaper in general, which may require a reply/reaction.

Potentially desirable content:

* Personal Stories (yes/no)
    In certain fora, users are encouraged to share their personal stories, experiences, anecdotes etc. regarding the respective topic.
* Arguments Used (yes/no)
    It is desirable for users to back their statements with rational argumentation, reasoning and sources.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

Austrian German

## Dataset Structure

### Data Instances

An example from the `posts_labeled` config:
```json
{
  "ID_Post": "79",
  "ID_Parent_Post": "",
  "ID_Article": "1",
  "ID_User": "12071",
  "CreatedAt": "2015-06-01 08:58:32.363",
  "Status": "online",
  "Headline": "",
  "Body": "ich kann keinen hinweis finden, wo man sich hinwenden muss, sollte man als abonnent des standard, die zeitung nicht bekommt, ist dass bewusst so arrangiert?",
  "PositiveVotes": 0,
  "NegativeVotes": 0,
  "Category": 5,
  "Value": 1,
  "Fold": 1
}
```

An example from the `posts_unlabeled` config:
```json
{
  "ID_Post": "51",
  "ID_Parent_Post": "",
  "ID_Article": "1",
  "ID_User": "11125",
  "CreatedAt": "2011-05-15 08:37:11.313",
  "Status": "online",
  "Headline": "Ich würde es sehr begrüßen, wenn",
  "Body": "Antworten erst beim Erscheinen als e-Mail dem Poster zugestellt würden.\r\n\r\nEs gibt User, die ihre Kommentare sofort nach Mail-Eingang irgendwo hinposten. Dadurch wird \r\n1. vor allem für andere Unser die Lesbarkeit wesentlich beeinträchtigt,\r\n2. kann das Post verdreht wiedergegeben werden,\r\n3. man ist immer wieder gezwungen die Antwort richtig zu stellen.\r\n\r\nPrivatfehden von Usern sollten, wenn schon zugelassen, für alle User nachvollziehbar sein.\r\n\r\nDanke!",
  "PositiveVotes": 1,
  "NegativeVotes": 0
}
```

An example from the `articles` config:
```json
{
  "ID_Article": "41",
  "Path": "Newsroom/Wirtschaft/Wirtschaftpolitik/Energiemarkt",
  "publishingDate": "2015-06-01 12:39:35.00",
  "Title": "Öl- und Gas-Riesen fordern weltweite CO2-Preise",
  "Body": '<div class="section" id="content-main" itemprop="articleBody"><div class="copytext"><h2 itemprop="description">Brief von BP, Total, Shell, Statoil, BG Group und Eni unterzeichnet</h2><p>Paris/London/La Defense - Sechs große Öl- und Gaskonzerne haben mit Blick auf die Verhandlungen über einen neuen Welt-Klimavertrag ein globales Preissystem für CO2-Emissionen gefordert. Wenn der Ausstoß von CO2 Geld kostet, sei dies ein Anreiz für die Nutzung von Erdgas statt Kohle, mehr Energieeffizienz und Investitionen zur Vermeidung des Treibhausgases, heißt es in einem am Montag veröffentlichten Brief.</p>\n<p>Das Schreiben ist unterzeichnet von BP, Total, Shell, Statoil, BG Group und Eni. Die Unternehmen versicherten, sie seien bereit, ihren Teil zum Kampf gegen den <a href="/r1937/Klimawandel">Klimawandel</a> beizutragen. Dafür sei aber ein klarer und verlässlicher Politik-Rahmen nötig. (APA, 1.6.2015)</p> </div></div>'
}
```

### Data Fields

The data set contains the following data for each post:

* **ID_Post**: Post ID
* **ID_Parent_Post**: Parent post (replies give rise to tree-like discussion thread structures)
* **ID_Article**: Article ID
* **ID_User**: User ID (the user names used by the website have been re-mapped to new numeric IDs)
* **Headline**: Headline (max. 250 characters)
* **Body**: Main Body (max. 750 characters)
* **CreatedAt**: Time stamp
* **Status**: Status (online or deleted by a moderator)
* **PositiveVotes**: Number of positive votes by other community members
* **NegativeVotes**: Number of negative votes by other community members

Labeled posts also contain:

* **Category**: The category of the annotation, one of: ArgumentsUsed, Discriminating, Inappropriate, OffTopic, PersonalStories, PossiblyFeedback, SentimentNegative, SentimentNeutral, SentimentPositive
* **Value**: either 0 or 1, explicitly indicating whether or not the post has the specified category as a label (i.e. a category of `ArgumentsUsed` with value of `0` means that an annotator explicitly labeled that this post doesn't use arguments, as opposed to the mere absence of a positive label).
* **Fold**: a number between [0-9] from a 10-fold split by the authors

For each article, the data set contains the following data:

* **ID_Article**: Article ID
* **publishingDate**: Publishing date
* **Path**: Topic Path (e.g.: Newsroom / Sports / Motorsports / Formula 1)
* **Title**: Title
* **Body**: Body

### Data Splits

Training split only.

|      name       |   train |
|-----------------|--------:|
| posts_labeled   |   40567 |
| posts_unlabeled | 1000000 |
| articles        |   12087 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

This data set is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

### Citation Information

```
@InProceedings{Schabus2018,
  author    = {Dietmar Schabus and Marcin Skowron},
  title     = {Academic-Industrial Perspective on the Development and Deployment of a Moderation System for a Newspaper Website},
  booktitle = {Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC)},
  year      = {2018},
  address   = {Miyazaki, Japan},
  month     = may,
  pages     = {1602-1605},
  abstract  = {This paper describes an approach and our experiences from the development, deployment and usability testing of a Natural Language Processing (NLP) and Information Retrieval system that supports the moderation of user comments on a large newspaper website. We highlight some of the differences between industry-oriented and academic research settings and their influence on the decisions made in the data collection and annotation processes, selection of document representation and machine learning methods. We report on classification results, where the problems to solve and the data to work with come from a commercial enterprise. In this context typical for NLP research, we discuss relevant industrial aspects. We believe that the challenges faced as well as the solutions proposed for addressing them can provide insights to others working in a similar setting.},
  url       = {http://www.lrec-conf.org/proceedings/lrec2018/summaries/8885.html},
}
```

### Contributions

Thanks to [@aseifert](https://github.com/aseifert) for adding this dataset.