parquet-converter commited on
Commit
e3b82ed
·
1 Parent(s): 4600db2

Update parquet files

Browse files
README.md DELETED
@@ -1,128 +0,0 @@
1
- ---
2
- license: mit
3
- ---
4
-
5
- # Dataset Card for ogbg-molpcba
6
-
7
- ## Table of Contents
8
- - [Table of Contents](#table-of-contents)
9
- - [Dataset Description](#dataset-description)
10
- - [Dataset Summary](#dataset-summary)
11
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
12
- - [External Use](#external-use)
13
- - [PyGeometric](#pygeometric)
14
- - [Dataset Structure](#dataset-structure)
15
- - [Data Properties](#data-properties)
16
- - [Data Fields](#data-fields)
17
- - [Data Splits](#data-splits)
18
- - [Additional Information](#additional-information)
19
- - [Licensing Information](#licensing-information)
20
- - [Citation Information](#citation-information)
21
- - [Contributions](#contributions)
22
-
23
- ## Dataset Description
24
-
25
- - **Homepage:** [Homepage](https://ogb.stanford.edu/docs/graphprop/#ogbg-mol)
26
- - **Repository:** [Repo](https://github.com/snap-stanford/ogb)
27
- - **Paper:**: Open Graph Benchmark: Datasets for Machine Learning on Graphs
28
- - **Leaderboard:**: [OGB leaderboard](https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-molpcba) and [Papers with code leaderboard](https://paperswithcode.com/sota/graph-property-prediction-on-ogbg-molpcba)
29
-
30
- ### Dataset Summary
31
-
32
- The `ogbg-molpcba` dataset is a small molecular property prediction dataset, adapted from MoleculeNet by teams at Stanford, to be a part of the Open Graph Benchmark.
33
-
34
- ### Supported Tasks and Leaderboards
35
-
36
- `ogbg-molpcba` should be used for molecular property prediction (with 128 properties to predict, not all present for all graphs), a binary classification task.
37
- The score used is Average Precision (AP) averaged over the tasks.
38
-
39
- The associated leaderboards are here: [OGB leaderboard](https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-molpcba) and [Papers with code leaderboard](https://paperswithcode.com/sota/graph-property-prediction-on-ogbg-molpcba).
40
-
41
- ## External Use
42
- ### PyGeometric
43
- To load in PyGeometric, do the following:
44
-
45
- ```python
46
- from datasets import load_dataset
47
-
48
- from torch_geometric.data import Data
49
- from torch_geometric.loader import DataLoader
50
-
51
- dataset = load_dataset("graphs-datasets/ogbg-molpcba")
52
- # For the train set (replace by valid or test as needed)
53
- graphs_list_pygeometric = [Data(graph) for graph in dataset["train"]]
54
- dataset_pygeometric = DataLoader(graphs_list_pygeometric)
55
-
56
- ```
57
-
58
-
59
- ## Dataset Structure
60
-
61
- ### Data Properties
62
-
63
- | property | value |
64
- |---|---|
65
- | scale | medium |
66
- | #graphs | 437,929 |
67
- | average #nodes | 26.0 |
68
- | average #edges | 28.1 |
69
- | average node degree | 2.2 |
70
- | average cluster coefficient | 0.002 |
71
- | MaxSCC ratio | 0.999 |
72
- | graph diameter | 13.6 |
73
-
74
- ### Data Fields
75
-
76
- Each row of a given file is a graph, with:
77
- - `node_feat` (list: #nodes x #node-features): nodes
78
- - `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
79
- - `edge_attr` (list: #edges x #edge-features): for the aforementioned edges, contains their features
80
- - `y` (list: 1 x #labels): contains the number of labels available to predict (here 128 labels, equal to zero, one, or Nan if the property is not relevant for the graph)
81
- - `num_nodes` (int): number of nodes of the graph
82
-
83
- ### Data Splits
84
-
85
- This data comes from the PyGeometric version of the dataset provided by OGB, and follows the provided data splits.
86
- This information can be found back using
87
- ```python
88
- from ogb.graphproppred import PygGraphPropPredDataset
89
-
90
- dataset = PygGraphPropPredDataset(name = 'ogbg-molpcba')
91
-
92
- split_idx = dataset.get_idx_split()
93
- train = dataset[split_idx['train']] # valid, test
94
- ```
95
-
96
- ## Additional Information
97
-
98
- ### Licensing Information
99
- The dataset has been released under MIT license.
100
-
101
- ### Citation Information
102
- ```
103
- @inproceedings{hu-etal-2020-open,
104
- author = {Weihua Hu and
105
- Matthias Fey and
106
- Marinka Zitnik and
107
- Yuxiao Dong and
108
- Hongyu Ren and
109
- Bowen Liu and
110
- Michele Catasta and
111
- Jure Leskovec},
112
- editor = {Hugo Larochelle and
113
- Marc Aurelio Ranzato and
114
- Raia Hadsell and
115
- Maria{-}Florina Balcan and
116
- Hsuan{-}Tien Lin},
117
- title = {Open Graph Benchmark: Datasets for Machine Learning on Graphs},
118
- booktitle = {Advances in Neural Information Processing Systems 33: Annual Conference
119
- on Neural Information Processing Systems 2020, NeurIPS 2020, December
120
- 6-12, 2020, virtual},
121
- year = {2020},
122
- url = {https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html},
123
- }
124
- ```
125
-
126
- ### Contributions
127
-
128
- Thanks to [@clefourrier](https://github.com/clefourrier) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
test.jsonl → graphs-datasets--ogbg-molpcba/json-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0e11bce700850348b88ef3a59f7650b887c91bbffb5f8c7d128de34ee36f469
3
- size 113364813
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:932fe693ebaed59202453060bec21daee7f71389e6bf7c6df3a9e8cffb3b7e39
3
+ size 6650629
train.jsonl → graphs-datasets--ogbg-molpcba/json-train-00000-of-00004.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ea0d7399d0b0b3fbb766fe87131b0f0c4cbf5fdd8e9627f39d462a3cf0f0f66f
3
- size 865541541
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f9580b3bd2ddcacd6c87b881f0409802b1d18ef3f1454e3301b859c52d858b8
3
+ size 12793306
valid.jsonl → graphs-datasets--ogbg-molpcba/json-train-00001-of-00004.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7db74f46a72f1fa46f213198d5063708c468c1e2cd5eff5c2fecb3ab23562c27
3
- size 113105740
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc94e728db884dcf28aedf3b2c45384efc938bcaa0d71b97d6997584498c55bd
3
+ size 12725471
graphs-datasets--ogbg-molpcba/json-train-00002-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:057a88cf698555a662ecc1c7962b4f36484bd7cde81d838a3a3f0ca68fc1ba3b
3
+ size 12771340
graphs-datasets--ogbg-molpcba/json-train-00003-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bf473775c26f1cd21474378e51b8d202fd1c3a1876d2dd2f31c36690e96ec0d
3
+ size 9589446
graphs-datasets--ogbg-molpcba/json-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbce753c2eea9b954ff3e8bb258d68d289b882ffbfd973e522b6d15ce6859b19
3
+ size 6588188