# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import io import datasets import constants import pickle import logging from huggingface_hub import snapshot_download, hf_hub_url, hf_hub_download _CITATION = """\ @InProceedings{mchen-discoeval-19, title = {Evaluation Benchmarks and Learning Criteria for Discourse-Aware Sentence Representations}, author = {Mingda Chen and Zewei Chu and Kevin Gimpel}, booktitle = {Proc. of {EMNLP}}, year={2019} } """ _DESCRIPTION = """\ This dataset contains all tasks of the DiscoEval benchmark for sentence representation learning. """ _HOMEPAGE = "https://github.com/ZeweiChu/DiscoEval" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { "DiscoEval": "https://huggingface.co/.zip", } # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class DiscoEvalSentence(datasets.GeneratorBasedBuilder): """DiscoEval Benchmark""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name=constants.SPARXIV, version=VERSION, description="Sentence positioning dataset from arXiv", ), datasets.BuilderConfig( name=constants.SPROCSTORY, version=VERSION, description="Sentence positioning dataset from ROCStory", ), datasets.BuilderConfig( name=constants.SPWIKI, version=VERSION, description="Sentence positioning dataset from Wikipedia", ), datasets.BuilderConfig( name=constants.DCCHAT, version=VERSION, description="Discourse Coherence dataset from chat", ), datasets.BuilderConfig( name=constants.DCWIKI, version=VERSION, description="Discourse Coherence dataset from Wikipedia", ), datasets.BuilderConfig( name=constants.RST, version=VERSION, description="The RST Discourse Treebank dataset ", ), datasets.BuilderConfig( name=constants.PDTB_E, version=VERSION, description="The Penn Discourse Treebank - Explicit dataset.", ), datasets.BuilderConfig( name=constants.PDTB_I, version=VERSION, description="The Penn Discourse Treebank - Implicit dataset.", ), datasets.BuilderConfig( name=constants.SSPABS, version=VERSION, description="The SSP dataset.", ), ] DEFAULT_CONFIG_NAME = constants.SPARXIV # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset if self.config.name in [constants.SPARXIV, constants.SPROCSTORY, constants.SPWIKI]: features_dict = { constants.TEXT_COLUMN_NAME[i]: datasets.Value('string') for i in range(constants.SP_TEXT_COLUMNS + 1) } features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.SP_LABELS) features = datasets.Features(features_dict) elif self.config.name in [constants.DCCHAT, constants.DCWIKI]: features_dict = { constants.TEXT_COLUMN_NAME[i]: datasets.Value('string') for i in range(constants.DC_TEXT_COLUMNS + 1) } features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.DC_LABELS) features = datasets.Features(features_dict) elif self.config.name in [constants.RST]: features_dict = { constants.TEXT_COLUMN_NAME[i]: [datasets.Value('string')] for i in range(constants.RST_TEXT_COLUMNS + 1) } features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.RST_LABELS) features = datasets.Features(features_dict) elif self.config.name in [constants.PDTB_E]: features_dict = { constants.TEXT_COLUMN_NAME[i]: datasets.Value('string') for i in range(constants.PDTB_E_TEXT_COLUMNS + 1) } features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.PDTB_E_LABELS) features = datasets.Features(features_dict) elif self.config.name in [constants.PDTB_I]: features_dict = { constants.TEXT_COLUMN_NAME[i]: datasets.Value('string') for i in range(constants.PDTB_I_TEXT_COLUMNS + 1) } features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.PDTB_I_LABELS) features = datasets.Features(features_dict) elif self.config.name in [constants.SSPABS]: features_dict = { constants.TEXT_COLUMN_NAME[i]: datasets.Value('string') for i in range(constants.SSPABS_TEXT_COLUMNS + 1) } features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.SSPABS_LABELS) features = datasets.Features(features_dict) else: # This is an example to show how to have different features for "first_domain" and "second_domain" features = datasets.Features( { "sentence": datasets.Value("string"), "option2": datasets.Value("string"), "second_domain_answer": datasets.Value("string") # These are the features of your dataset like images, labels ... } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive # urls = _URLS[self.config.name] # data_dir = dl_manager.download_and_extract(urls) data_dir = '' train_name = '' valid_name = '' test_name = '' if self.config.name in [constants.SPARXIV, constants.SPROCSTORY, constants.SPWIKI]: data_dir = constants.SP_DATA_DIR + "/" + constants.SP_DIRS[self.config.name] train_name = constants.SP_TRAIN_NAME valid_name = constants.SP_VALID_NAME test_name = constants.SP_TEST_NAME elif self.config.name in [constants.BSOARXIV, constants.BSOWIKI, constants.BSOROCSTORY]: data_dir = constants.BSO_DATA_DIR + "/" + constants.BSO_DIRS[self.config.name] train_name = constants.BSO_TRAIN_NAME valid_name = constants.BSO_VALID_NAME test_name = constants.BSO_TEST_NAME elif self.config.name in [constants.DCCHAT, constants.DCWIKI]: data_dir = constants.DC_DATA_DIR + "/" + constants.DC_DIRS[self.config.name] train_name = constants.DC_TRAIN_NAME valid_name = constants.DC_VALID_NAME test_name = constants.DC_TEST_NAME elif self.config.name in [constants.RST]: data_dir = constants.RST_DATA_DIR train_name = constants.RST_TRAIN_NAME valid_name = constants.RST_VALID_NAME test_name = constants.RST_TEST_NAME elif self.config.name in [constants.PDTB_E, constants.PDTB_I]: data_dir = os.path.join(constants.PDTB_DATA_DIR, constants.PDTB_DIRS[self.config.name]) train_name = constants.PDTB_TRAIN_NAME valid_name = constants.PDTB_VALID_NAME test_name = constants.PDTB_TEST_NAME elif self.config.name in [constants.SSPABS]: data_dir = constants.SSPABS_DATA_DIR train_name = constants.SSPABS_TRAIN_NAME valid_name = constants.SSPABS_VALID_NAME test_name = constants.SSPABS_TEST_NAME urls_to_download = { "train": data_dir + "/" + train_name, "valid": data_dir + "/" + valid_name, "test": data_dir + "/" + test_name, } logger = logging.getLogger(__name__) data_dirs = dl_manager.download_and_extract(urls_to_download) logger.info(f"Data directories: {data_dirs}") downloaded_files = dl_manager.download_and_extract(data_dirs) logger.info(f"Downloading Completed") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": downloaded_files['train'], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": downloaded_files['valid'], "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": downloaded_files['test'], "split": "test" }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): logger = logging.getLogger(__name__) logger.info(f"Current working dir: {os.getcwd()}") logger.info("generating examples from = %s", filepath) print(f"Current working dir: {os.getcwd()}") print(f"Current working dir: {os.listdir(os.getcwd())}") if self.config.name in [constants.RST]: data = pickle.load(open(filepath, "rb")) for key, line in enumerate(data): example = {constants.TEXT_COLUMN_NAME[i]: sent for i, sent in enumerate(line[1:])} example[constants.LABEL_NAME] = line[0] yield key, example else: with io.open(filepath, mode='r', encoding='utf-8') as f: for key, line in enumerate(f): line = line.strip().split("\t") example = {constants.TEXT_COLUMN_NAME[i]: sent for i, sent in enumerate(line[1:])} example[constants.LABEL_NAME] = line[0] yield key, example