File size: 5,671 Bytes
a6326c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import sys

sys.path.append("modules/preprocess")

from preprocessor.SerialPreprocessor import SerialConfig, SerialPreprocessor
from const import (
    DIALOGUE_CONTEXT_TO_RESPONSE_GENERATION,
    DOCUMENT_GROUNDED_CONVERSATION,
    MULTI_REF_SEP,
)
from preprocessor.prompt_funcs import const_prompt_func_wrapper
from preprocessor.knowledge_funcs import (
    extract_dialogue_knowledge_wrapper,
    origin_knowledge,
    None_knowledge,
    extract_kg_knowledge_wrapper,
    extract_turn_knowledge_wrapper,
)
from preprocessor.label_funs import (
    extract_turn_utterance,
)
import sys

if __name__ == "__main__":
    input_data_path = sys.argv[1]
    output_data_path = sys.argv[2]
    TASK = DOCUMENT_GROUNDED_CONVERSATION

    if len(sys.argv) <= 3:
        based_on = "dialogue"
    else:
        based_on = sys.argv[3]

    if len(sys.argv) < 5:
        if based_on == "turn-document":
            serial_proc = SerialPreprocessor(
                SerialConfig(
                    input_data_path,
                    output_data_path,
                    TASK,
                    logger_name=TASK,
                    task_bos_token=f"[{TASK}]",
                    prompt_func=const_prompt_func_wrapper(
                        "Response based on the dialogue context and given knowledge"
                    ),
                    # knowledge_func=extract_kg_knowledge_wrapper(": ", " | ", "; ", " "),
                    # knowledge_func=extract_dialogue_knowledge_wrapper(": ", " | ", ", "),
                    # knowledge_func=None_knowledge,
                    knowledge_func=origin_knowledge,
                    turn_knowledge_func=extract_turn_knowledge_wrapper(
                        ": ", " | ", ", "
                    ),
                    label_func=extract_turn_utterance,
                    roles_to_build_example=[["user1"], ["user2"]],
                    # dev_and_test_roles_to_build_example=[["user2"]],
                    roles_in_history=None,
                    multi_ref_sep=None,
                )
            )
        elif based_on == "document":
            serial_proc = SerialPreprocessor(
                SerialConfig(
                    input_data_path,
                    output_data_path,
                    TASK,
                    logger_name=TASK,
                    task_bos_token=f"[{TASK}]",
                    prompt_func=const_prompt_func_wrapper(
                        "Response based on the dialogue context and given knowledge"
                    ),
                    # knowledge_func=extract_kg_knowledge_wrapper(": ", " | ", "; ", " "),
                    knowledge_func=extract_dialogue_knowledge_wrapper(
                        ": ", " | ", ", "
                    ),
                    # knowledge_func=None_knowledge,
                    # knowledge_func=origin_knowledge,
                    label_func=extract_turn_utterance,
                    roles_to_build_example=[
                        ["third-person"],
                        ["Listener"],
                        ["Speaker"],
                    ],
                    dev_and_test_roles_to_build_example=[
                        ["third-person"],
                        ["Listener"],
                    ],
                )
            )
        elif based_on == "None":
            serial_proc = SerialPreprocessor(
                SerialConfig(
                    input_data_path,
                    output_data_path,
                    TASK,
                    logger_name=TASK,
                    task_bos_token=f"[{TASK}]",
                    prompt_func=const_prompt_func_wrapper(
                        "Response based on the dialogue context and given knowledge"
                    ),
                    knowledge_func=None_knowledge,
                    label_func=extract_turn_utterance,
                    roles_to_build_example=[["SYSTEM"]],
                )
            )
        else:
            serial_proc = SerialPreprocessor(
                SerialConfig(
                    input_data_path,
                    output_data_path,
                    TASK,
                    logger_name=TASK,
                    task_bos_token=f"[{TASK}]",
                    prompt_func=const_prompt_func_wrapper(
                        "Response based on the dialogue context and given knowledge"
                    ),
                    knowledge_func=extract_kg_knowledge_wrapper(": ", " | ", "; ", " "),
                    # knowledge_func=extract_dialogue_knowledge_wrapper(": ", " | ", ", "),
                    # knowledge_func=None_knowledge,
                    label_func=extract_turn_utterance,
                    roles_to_build_example=[["SYSTEM"], ["USER"]],
                    dev_and_test_roles_to_build_example=[["SYSTEM"]],
                )
            )
    else:
        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper(
                    "Response based on the dialogue context and given knowledge"
                ),
                # knowledge_func=extract_kg_knowledge_wrapper(": ", " | ", "; ", " "),
                knowledge_func=extract_dialogue_knowledge_wrapper(": ", " | ", ", "),
                label_func=extract_turn_utterance,
                roles_to_build_example=[["SYSTEM"]],
                roles_in_history=[["USER"]],
                multi_ref_sep=MULTI_REF_SEP,
            )
        )

    serial_proc.launch()