File size: 11,962 Bytes
a6326c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from preprocessor.SerialPreprocessor import SerialConfig, SerialPreprocessor
from const import (
    DIALOGUE_SUMMARY,
    EMOTION_RECOGNITION,
    DIALOGUE_CONTEXT_TO_TEXT_GENERATION,
    ABSA_TERM_OPINION_SENTIMENT,
    ABSA_TERM_SENTIMENT,
    ABSA_CATEGORY_SENTIMENT,
    ABSA_TERM_CATEGORY_SENTIMENT,
    CHARACTER_IDENTIFICATION,
    DIALOGUE_STATE_TRACKING,
    DOCUMENT_GROUNDED_CONVERSATION,
    TEXT2SQL,
    SLOT_FILLING,
)
from preprocessor.prompt_funcs import const_prompt_func_wrapper
from preprocessor.knowledge_funcs import (
    None_knowledge,
    concat_list_knowledge_wrapper,
    extract_turn_knowledge_wrapper,
    origin_knowledge,
    extract_schema_knowledge_wrapper,
)
from preprocessor.label_funs import (
    extract_summary,
    extract_turn_emotion_wrapper,
    extract_turn_utterance,
    extract_aspects_wrapper,
    rebuild_utterance_with_characters,
    extract_belief_state_wrapper,
    extract_sql,
    extract_slots_without_intents_wrapper,
)
import os

if __name__ == "__main__":
    # 1. Dialogue Summary
    TASK = DIALOGUE_SUMMARY
    input_path = r"E:\research\processed\DialogueSummary"
    output_path = r"E:\research\seq\DialogueSummary"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper(
                    "Give a summary of this dialogue."
                ),
                knowledge_func=None_knowledge,
                label_func=extract_summary,
            )
        )

        serial_proc.launch()

    # 2. Emotion Recognition
    TASK = EMOTION_RECOGNITION
    input_path = r"E:\research\processed\EmotionRecognition"
    output_path = r"E:\research\seq\EmotionRecognition"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper(
                    "With given possible emotions, select the correct answer."
                ),
                knowledge_func=concat_list_knowledge_wrapper(
                    "possible choices: ", " | "
                ),
                label_func=extract_turn_emotion_wrapper(", "),
            )
        )

        serial_proc.launch()

    # 3. Dialogue Context-to-Text Generation
    TASK = DIALOGUE_CONTEXT_TO_TEXT_GENERATION
    input_path = r"E:\research\processed\Dialogue-Context-to-Text Generation"
    output_path = r"E:\research\seq\Dialogue-Context-to-Text Generation"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper(
                    "With given dialogue context, give the response."
                ),
                knowledge_func=None_knowledge,
                label_func=extract_turn_utterance,
                roles_to_build_example=[["Listener"], ["third-person"]],
            )
        )

        serial_proc.launch()

    # 4. Aspect Sentiment Analysis
    # 4.1 ABSA: term opinion sentiment
    TASK = ABSA_TERM_OPINION_SENTIMENT
    input_path = r"E:\research\processed\ABSA-term opinion sentiment\ASTE"
    output_path = r"E:\research\seq\Aspect-based Sentiment Analysis\ASTE"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper("Give all the aspects."),
                knowledge_func=None_knowledge,
                label_func=extract_aspects_wrapper(" | ", ", "),
            )
        )

        serial_proc.launch()

    # 4.2 ABSA: term sentiment
    TASK = ABSA_TERM_SENTIMENT
    input_path = r"E:\research\processed\ABSA-term sentiment"
    output_path = r"E:\research\seq\Aspect-based Sentiment Analysis"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper("Give all the aspects."),
                knowledge_func=None_knowledge,
                label_func=extract_aspects_wrapper(" | ", ", "),
            )
        )

        serial_proc.launch()

    # 4.3 ABSA: category sentiment
    TASK = ABSA_CATEGORY_SENTIMENT
    input_path = r"E:\research\processed\ABSA-category sentiment"
    output_path = r"E:\research\seq\Aspect-based Sentiment Analysis"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper("Give all the aspects."),
                knowledge_func=None_knowledge,
                label_func=extract_aspects_wrapper(" | ", ", "),
            )
        )

        serial_proc.launch()

    # 4.4 ABSA: term category sentiment
    TASK = ABSA_TERM_CATEGORY_SENTIMENT
    input_path = r"E:\research\processed\ABSA-term category sentiment"
    output_path = r"E:\research\seq\Aspect-based Sentiment Analysis"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper("Give all the aspects."),
                knowledge_func=None_knowledge,
                label_func=extract_aspects_wrapper(" | ", ", "),
            )
        )

        serial_proc.launch()

    # 5. Character Identification
    TASK = CHARACTER_IDENTIFICATION
    input_path = r"E:\research\processed\CharacterIdentification"
    output_path = r"E:\research\seq\CharacterIdentification"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper("Generate with all characters."),
                knowledge_func=concat_list_knowledge_wrapper("all speakers: ", " | "),
                label_func=rebuild_utterance_with_characters,
            )
        )

        serial_proc.launch()


    # 6. Dialogue State Tracking
    TASK = DIALOGUE_STATE_TRACKING
    input_path = r"E:\research\processed\DialogueStateTracking"
    output_path = r"E:\research\seq\DialogueStateTracking"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper(
                    "With given dialogue context, give the dialogue state."
                ),
                knowledge_func=None_knowledge,
                label_func=extract_belief_state_wrapper(", ", " | ", "; ", ": "),
                roles_to_build_example=[["USER"]],
            )
        )

        serial_proc.launch()

    # 7. Document Grounded Conversation
    TASK = DOCUMENT_GROUNDED_CONVERSATION
    input_path = r"E:\research\processed\DocumentGroundedConversations"
    output_path = r"E:\research\seq\DocumentGroundedConversation"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper(
                    "With given dialogue context, give the response."
                ),
                knowledge_func=origin_knowledge,
                turn_knowledge_func=extract_turn_knowledge_wrapper(": ", " | ", "; "),
                label_func=extract_turn_utterance,
            )
        )

        serial_proc.launch()
    # 8. Text2SQL
    TASK = TEXT2SQL
    input_path = r"E:\research\processed\Text2SQL"
    output_path = r"E:\research\seq\Text2SQL"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper(
                    "With given dialogue context, give the sql."
                ),
                knowledge_func=origin_knowledge,
                turn_knowledge_func=extract_schema_knowledge_wrapper(),
                label_func=extract_sql,
            )
        )

        serial_proc.launch()

    TASK = SLOT_FILLING
    input_path = r"E:\research\processed\SlotFilling\MultiDoGo"
    output_path = r"E:\research\seq\SlotFilling\MultiDoGo"

    for dataset in os.listdir(input_path):
        input_data_path = os.path.join(input_path, dataset)
        output_data_path = os.path.join(output_path, dataset)

        serial_proc = SerialPreprocessor(
            SerialConfig(
                input_data_path,
                output_data_path,
                TASK,
                logger_name=TASK,
                task_bos_token=f"[{TASK}]",
                prompt_func=const_prompt_func_wrapper(
                    "With given utterance, fill the slots."
                ),
                knowledge_func=None_knowledge,
                label_func=extract_slots_without_intents_wrapper(", ", " | "),
            )
        )

        serial_proc.launch()