File size: 17,272 Bytes
a6326c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
from typing import List, Dict, Optional, Tuple
import random
import difflib
from rapidfuzz import fuzz
import sqlite3
import functools
from const import KNOWLEDGE_TO_SELECT, UTTERANCE, ROLES, BELIEF_STATE, DOMAIN
def None_knowledge():
return "None"
def concat_list_knowledge_wrapper(prompt: str = "", sep: str = " | "):
def get_list_knowledge(str_list: List[str]):
return prompt + sep.join(str_list)
return get_list_knowledge
def origin_knowledge(knowledge):
return knowledge
def extract_turn_knowledge(
knowledge, section_prompt_op, section_sep, section_value_sep
):
if isinstance(knowledge, dict):
sec_list = []
for section in sorted(knowledge.keys()):
sec_str = f"{section}{section_prompt_op}"
if isinstance(knowledge[section], str):
sec_str += knowledge[section]
elif isinstance(knowledge[section], list):
sec_str += section_value_sep.join(knowledge[section])
sec_list.append(sec_str)
return section_sep.join(sec_list)
elif isinstance(knowledge, str):
return knowledge
elif isinstance(knowledge, list):
return ";; ".join(
[
extract_turn_knowledge(
sec, section_prompt_op, section_sep, section_value_sep
)
for sec in knowledge
]
)
def extract_turn_domains_wrapper(prompt: str = "", sep: str = ", "):
def extract_turn_domains(knowledge, turn):
bs = turn[BELIEF_STATE]
domains = []
for state in bs:
domain = state[DOMAIN]
if domain not in domains:
domains.append(domain)
return prompt + sep.join(domains)
return extract_turn_domains
def extract_turn_knowledge_wrapper(section_prompt_op, section_sep, section_value_sep):
def extract_turn_knowledge_func(knowledge, turn):
return extract_turn_knowledge(
[knowledge[sec] for sec in turn[KNOWLEDGE_TO_SELECT]],
section_prompt_op,
section_sep,
section_value_sep,
)
return extract_turn_knowledge_func
# Text2SQL
EXIST = {"atis", "geo", "advising", "yelp", "restaurants", "imdb", "academic"}
# fmt: off
_stopwords = {'who', 'ourselves', 'down', 'only', 'were', 'him', 'at', "weren't", 'has', 'few', "it's", 'm', 'again',
'd', 'haven', 'been', 'other', 'we', 'an', 'own', 'doing', 'ma', 'hers', 'all', "haven't", 'in', 'but',
"shouldn't", 'does', 'out', 'aren', 'you', "you'd", 'himself', "isn't", 'most', 'y', 'below', 'is',
"wasn't", 'hasn', 'them', 'wouldn', 'against', 'this', 'about', 'there', 'don', "that'll", 'a', 'being',
'with', 'your', 'theirs', 'its', 'any', 'why', 'now', 'during', 'weren', 'if', 'should', 'those', 'be',
'they', 'o', 't', 'of', 'or', 'me', 'i', 'some', 'her', 'do', 'will', 'yours', 'for', 'mightn', 'nor',
'needn', 'the', 'until', "couldn't", 'he', 'which', 'yourself', 'to', "needn't", "you're", 'because',
'their', 'where', 'it', "didn't", 've', 'whom', "should've", 'can', "shan't", 'on', 'had', 'have',
'myself', 'am', "don't", 'under', 'was', "won't", 'these', 'so', 'as', 'after', 'above', 'each', 'ours',
'hadn', 'having', 'wasn', 's', 'doesn', "hadn't", 'than', 'by', 'that', 'both', 'herself', 'his',
"wouldn't", 'into', "doesn't", 'before', 'my', 'won', 'more', 'are', 'through', 'same', 'how', 'what',
'over', 'll', 'yourselves', 'up', 'mustn', "mustn't", "she's", 're', 'such', 'didn', "you'll", 'shan',
'when', "you've", 'themselves', "mightn't", 'she', 'from', 'isn', 'ain', 'between', 'once', 'here',
'shouldn', 'our', 'and', 'not', 'too', 'very', 'further', 'while', 'off', 'couldn', "hasn't", 'itself',
'then', 'did', 'just', "aren't"}
# fmt: on
_commonwords = {"no", "yes", "many"}
def is_number(s: str) -> bool:
try:
float(s.replace(",", ""))
return True
except:
return False
def is_stopword(s: str) -> bool:
return s.strip() in _stopwords
def is_commonword(s: str) -> bool:
return s.strip() in _commonwords
def is_common_db_term(s: str) -> bool:
return s.strip() in ["id"]
class Match(object):
def __init__(self, start: int, size: int) -> None:
self.start = start
self.size = size
def is_span_separator(c: str) -> bool:
return c in "'\"()`,.?! "
def split(s: str) -> List[str]:
return [c.lower() for c in s.strip()]
def prefix_match(s1: str, s2: str) -> bool:
i, j = 0, 0
for i in range(len(s1)):
if not is_span_separator(s1[i]):
break
for j in range(len(s2)):
if not is_span_separator(s2[j]):
break
if i < len(s1) and j < len(s2):
return s1[i] == s2[j]
elif i >= len(s1) and j >= len(s2):
return True
else:
return False
def get_effective_match_source(s: str, start: int, end: int) -> Match:
_start = -1
for i in range(start, start - 2, -1):
if i < 0:
_start = i + 1
break
if is_span_separator(s[i]):
_start = i
break
if _start < 0:
return None
_end = -1
for i in range(end - 1, end + 3):
if i >= len(s):
_end = i - 1
break
if is_span_separator(s[i]):
_end = i
break
if _end < 0:
return None
while _start < len(s) and is_span_separator(s[_start]):
_start += 1
while _end >= 0 and is_span_separator(s[_end]):
_end -= 1
return Match(_start, _end - _start + 1)
def get_matched_entries(
s: str, field_values: List[str], m_theta: float = 0.85, s_theta: float = 0.85
) -> Optional[List[Tuple[str, Tuple[str, str, float, float, int]]]]:
if not field_values:
return None
if isinstance(s, str):
n_grams = split(s)
else:
n_grams = s
matched = dict()
for field_value in field_values:
if not isinstance(field_value, str):
continue
fv_tokens = split(field_value)
sm = difflib.SequenceMatcher(None, n_grams, fv_tokens)
match = sm.find_longest_match(0, len(n_grams), 0, len(fv_tokens))
if match.size > 0:
source_match = get_effective_match_source(
n_grams, match.a, match.a + match.size
)
if source_match and source_match.size > 1:
match_str = field_value[match.b : match.b + match.size]
source_match_str = s[
source_match.start : source_match.start + source_match.size
]
c_match_str = match_str.lower().strip()
c_source_match_str = source_match_str.lower().strip()
c_field_value = field_value.lower().strip()
if (
c_match_str
and not is_number(c_match_str)
and not is_common_db_term(c_match_str)
):
if (
is_stopword(c_match_str)
or is_stopword(c_source_match_str)
or is_stopword(c_field_value)
):
continue
if c_source_match_str.endswith(c_match_str + "'s"):
match_score = 1.0
else:
if prefix_match(c_field_value, c_source_match_str):
match_score = (
fuzz.ratio(c_field_value, c_source_match_str) / 100
)
else:
match_score = 0
if (
is_commonword(c_match_str)
or is_commonword(c_source_match_str)
or is_commonword(c_field_value)
) and match_score < 1:
continue
s_match_score = match_score
if match_score >= m_theta and s_match_score >= s_theta:
if field_value.isupper() and match_score * s_match_score < 1:
continue
matched[match_str] = (
field_value,
source_match_str,
match_score,
s_match_score,
match.size,
)
if not matched:
return None
else:
return sorted(
matched.items(),
key=lambda x: (1e16 * x[1][2] + 1e8 * x[1][3] + x[1][4]),
reverse=True,
)
@functools.lru_cache(maxsize=1000, typed=False)
def get_column_picklist(table_name: str, column_name: str, db_path: str) -> list:
fetch_sql = "SELECT DISTINCT `{}` FROM `{}`".format(column_name, table_name)
try:
conn = sqlite3.connect(db_path)
conn.text_factory = bytes
c = conn.cursor()
c.execute(fetch_sql)
picklist = set()
for x in c.fetchall():
if isinstance(x[0], str):
picklist.add(x[0].encode("utf-8"))
elif isinstance(x[0], bytes):
try:
picklist.add(x[0].decode("utf-8"))
except UnicodeDecodeError:
picklist.add(x[0].decode("latin-1"))
else:
picklist.add(x[0])
picklist = list(picklist)
finally:
conn.close()
return picklist
def get_database_matches(
question: str,
table_name: str,
column_name: str,
db_path: str,
top_k_matches: int = 2,
match_threshold: float = 0.85,
) -> List[str]:
picklist = get_column_picklist(
table_name=table_name, column_name=column_name, db_path=db_path
)
matches = []
if picklist and isinstance(picklist[0], str):
matched_entries = get_matched_entries(
s=question,
field_values=picklist,
m_theta=match_threshold,
s_theta=match_threshold,
)
if matched_entries:
num_values_inserted = 0
for _match_str, (
field_value,
_s_match_str,
match_score,
s_match_score,
_match_size,
) in matched_entries:
if "name" in column_name and match_score * s_match_score < 1:
continue
if table_name != "sqlite_sequence": # Spider database artifact
matches.append(field_value)
num_values_inserted += 1
if num_values_inserted >= top_k_matches:
break
return matches
def serialize_schema(
question: str,
db_path: str,
db_id: str,
db_column_names: Dict[str, str],
db_table_names: List[str],
schema_serialization_type: str = "peteshaw",
schema_serialization_randomized: bool = False,
schema_serialization_with_db_id: bool = True,
schema_serialization_with_db_content: bool = False,
normalize_query: bool = True,
) -> str:
if schema_serialization_type == "verbose":
db_id_str = "Database: {db_id}. "
table_sep = ". "
table_str = "Table: {table}. Columns: {columns}"
column_sep = ", "
column_str_with_values = "{column} ({values})"
column_str_without_values = "{column}"
value_sep = ", "
elif schema_serialization_type == "peteshaw":
# see https://github.com/google-research/language/blob/master/language/nqg/tasks/spider/append_schema.py#L42
db_id_str = "{db_id}"
table_sep = ""
table_str = " | {table} : {columns}"
column_sep = " , "
column_str_with_values = "{column} ( {values} )"
column_str_without_values = "{column}"
value_sep = " , "
else:
raise NotImplementedError
def get_column_str(table_name: str, column_name: str) -> str:
column_name_str = column_name.lower() if normalize_query else column_name
if schema_serialization_with_db_content:
matches = get_database_matches(
question=question,
table_name=table_name,
column_name=column_name,
db_path=(db_path + "/" + db_id + "/" + db_id + ".sqlite"),
)
if matches:
return column_str_with_values.format(
column=column_name_str, values=value_sep.join(matches)
)
else:
return column_str_without_values.format(column=column_name_str)
else:
return column_str_without_values.format(column=column_name_str)
tables = [
table_str.format(
table=table_name.lower() if normalize_query else table_name,
columns=column_sep.join(
map(
lambda y: get_column_str(table_name=table_name, column_name=y[1]),
filter(
lambda y: y[0] == table_id,
zip(
db_column_names["table_id"],
db_column_names["column_name"],
),
),
)
),
)
for table_id, table_name in enumerate(db_table_names)
]
if schema_serialization_randomized:
random.shuffle(tables)
if schema_serialization_with_db_id:
serialized_schema = db_id_str.format(db_id=db_id) + table_sep.join(tables)
else:
serialized_schema = table_sep.join(tables)
return serialized_schema
def extract_schema_knowledge_wrapper(
schema_serialization_type: str = "peteshaw",
schema_serialization_randomized: bool = False,
schema_serialization_with_db_id: bool = True,
schema_serialization_with_db_content: bool = False,
normalize_query: bool = True,
):
def extract_turn_schema_knowledge_func(knowledge, turn):
schema = knowledge["schema"]
db_column_names = {
"table_id": [table_id for table_id, _ in schema["column_names_original"]],
"column_name": [
column_name for _, column_name in schema["column_names_original"]
],
}
return serialize_schema(
turn[UTTERANCE],
knowledge["db_path"],
knowledge["db_id"],
db_column_names,
schema["table_names_original"],
schema_serialization_type,
schema_serialization_randomized,
schema_serialization_with_db_id,
schema_serialization_with_db_content,
normalize_query,
)
return extract_turn_schema_knowledge_func
def extract_dict_knowledge(knowledge, key_prompt_op, pair_sep):
pair_list = []
for key in knowledge:
pair_list.append(f"{key}{key_prompt_op}{knowledge[key]}")
if not pair_list:
return "None"
return pair_sep.join(pair_list)
def extract_dict_knowledge_wrapper(key_prompt_op, pair_sep):
def extract_dict_knowledge_func(knowledge):
return extract_dict_knowledge(knowledge, key_prompt_op, pair_sep)
return extract_dict_knowledge_func
def extract_dialogue_knowledge(knowledge, key_prompt_op, pair_sep, role_sep):
pair_list = []
for key in knowledge:
if isinstance(knowledge[key], str):
pair_list.append(f"{key}{key_prompt_op}{knowledge[key]}")
elif isinstance(knowledge[key], list):
turns = []
for turn in knowledge[key]:
role_str = role_sep.join(turn[ROLES])
turns.append(f"{role_str}# {turn[UTTERANCE]}")
dial_str = " ".join(turns)
pair_list.append(f"{key}{key_prompt_op}{dial_str}")
if not pair_list:
return "None"
return pair_sep.join(pair_list)
def extract_dialogue_knowledge_wrapper(key_prompt_op, pair_sep, role_sep):
def extract_dialogue_knowledge_func(knowledge):
return extract_dialogue_knowledge(knowledge, key_prompt_op, pair_sep, role_sep)
return extract_dialogue_knowledge_func
def extract_kg_knowledge(
knowledge, key_prompt_op, pair_sep, intra_edge_sep, inner_edge_sep
):
pair_list = []
for key in knowledge:
if isinstance(knowledge[key], str):
pair_list.append(f"{key}{key_prompt_op}{knowledge[key]}")
elif isinstance(knowledge[key], list):
edges = []
for edge in knowledge[key]:
edges.append(inner_edge_sep.join(edge))
kg_str = intra_edge_sep.join(edges)
pair_list.append(f"{key}{key_prompt_op}{kg_str}")
if not pair_list:
return "None"
return pair_sep.join(pair_list)
def extract_kg_knowledge_wrapper(
key_prompt_op, pair_sep, intra_edge_sep, inner_edge_sep
):
def extract_kg_knowledge_func(knowledge):
return extract_kg_knowledge(
knowledge, key_prompt_op, pair_sep, intra_edge_sep, inner_edge_sep
)
return extract_kg_knowledge_func
|