from preprocessor.SerialPreprocessor import SerialConfig, SerialPreprocessor from const import ( DIALOGUE_SUMMARY, EMOTION_RECOGNITION, DIALOGUE_CONTEXT_TO_TEXT_GENERATION, ABSA_TERM_OPINION_SENTIMENT, ABSA_TERM_SENTIMENT, ABSA_CATEGORY_SENTIMENT, ABSA_TERM_CATEGORY_SENTIMENT, CHARACTER_IDENTIFICATION, DIALOGUE_STATE_TRACKING, DOCUMENT_GROUNDED_CONVERSATION, TEXT2SQL, SLOT_FILLING, ) from preprocessor.prompt_funcs import const_prompt_func_wrapper from preprocessor.knowledge_funcs import ( None_knowledge, concat_list_knowledge_wrapper, extract_turn_knowledge_wrapper, origin_knowledge, extract_schema_knowledge_wrapper, ) from preprocessor.label_funs import ( extract_summary, extract_turn_emotion_wrapper, extract_turn_utterance, extract_aspects_wrapper, rebuild_utterance_with_characters, extract_belief_state_wrapper, extract_sql, extract_slots_without_intents_wrapper, ) import os if __name__ == "__main__": # 1. Dialogue Summary TASK = DIALOGUE_SUMMARY input_path = r"E:\research\processed\DialogueSummary" output_path = r"E:\research\seq\DialogueSummary" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper( "Give a summary of this dialogue." ), knowledge_func=None_knowledge, label_func=extract_summary, ) ) serial_proc.launch() # 2. Emotion Recognition TASK = EMOTION_RECOGNITION input_path = r"E:\research\processed\EmotionRecognition" output_path = r"E:\research\seq\EmotionRecognition" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper( "With given possible emotions, select the correct answer." ), knowledge_func=concat_list_knowledge_wrapper( "possible choices: ", " | " ), label_func=extract_turn_emotion_wrapper(", "), ) ) serial_proc.launch() # 3. Dialogue Context-to-Text Generation TASK = DIALOGUE_CONTEXT_TO_TEXT_GENERATION input_path = r"E:\research\processed\Dialogue-Context-to-Text Generation" output_path = r"E:\research\seq\Dialogue-Context-to-Text Generation" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper( "With given dialogue context, give the response." ), knowledge_func=None_knowledge, label_func=extract_turn_utterance, roles_to_build_example=[["Listener"], ["third-person"]], ) ) serial_proc.launch() # 4. Aspect Sentiment Analysis # 4.1 ABSA: term opinion sentiment TASK = ABSA_TERM_OPINION_SENTIMENT input_path = r"E:\research\processed\ABSA-term opinion sentiment\ASTE" output_path = r"E:\research\seq\Aspect-based Sentiment Analysis\ASTE" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper("Give all the aspects."), knowledge_func=None_knowledge, label_func=extract_aspects_wrapper(" | ", ", "), ) ) serial_proc.launch() # 4.2 ABSA: term sentiment TASK = ABSA_TERM_SENTIMENT input_path = r"E:\research\processed\ABSA-term sentiment" output_path = r"E:\research\seq\Aspect-based Sentiment Analysis" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper("Give all the aspects."), knowledge_func=None_knowledge, label_func=extract_aspects_wrapper(" | ", ", "), ) ) serial_proc.launch() # 4.3 ABSA: category sentiment TASK = ABSA_CATEGORY_SENTIMENT input_path = r"E:\research\processed\ABSA-category sentiment" output_path = r"E:\research\seq\Aspect-based Sentiment Analysis" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper("Give all the aspects."), knowledge_func=None_knowledge, label_func=extract_aspects_wrapper(" | ", ", "), ) ) serial_proc.launch() # 4.4 ABSA: term category sentiment TASK = ABSA_TERM_CATEGORY_SENTIMENT input_path = r"E:\research\processed\ABSA-term category sentiment" output_path = r"E:\research\seq\Aspect-based Sentiment Analysis" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper("Give all the aspects."), knowledge_func=None_knowledge, label_func=extract_aspects_wrapper(" | ", ", "), ) ) serial_proc.launch() # 5. Character Identification TASK = CHARACTER_IDENTIFICATION input_path = r"E:\research\processed\CharacterIdentification" output_path = r"E:\research\seq\CharacterIdentification" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper("Generate with all characters."), knowledge_func=concat_list_knowledge_wrapper("all speakers: ", " | "), label_func=rebuild_utterance_with_characters, ) ) serial_proc.launch() # 6. Dialogue State Tracking TASK = DIALOGUE_STATE_TRACKING input_path = r"E:\research\processed\DialogueStateTracking" output_path = r"E:\research\seq\DialogueStateTracking" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper( "With given dialogue context, give the dialogue state." ), knowledge_func=None_knowledge, label_func=extract_belief_state_wrapper(", ", " | ", "; ", ": "), roles_to_build_example=[["USER"]], ) ) serial_proc.launch() # 7. Document Grounded Conversation TASK = DOCUMENT_GROUNDED_CONVERSATION input_path = r"E:\research\processed\DocumentGroundedConversations" output_path = r"E:\research\seq\DocumentGroundedConversation" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper( "With given dialogue context, give the response." ), knowledge_func=origin_knowledge, turn_knowledge_func=extract_turn_knowledge_wrapper(": ", " | ", "; "), label_func=extract_turn_utterance, ) ) serial_proc.launch() # 8. Text2SQL TASK = TEXT2SQL input_path = r"E:\research\processed\Text2SQL" output_path = r"E:\research\seq\Text2SQL" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper( "With given dialogue context, give the sql." ), knowledge_func=origin_knowledge, turn_knowledge_func=extract_schema_knowledge_wrapper(), label_func=extract_sql, ) ) serial_proc.launch() TASK = SLOT_FILLING input_path = r"E:\research\processed\SlotFilling\MultiDoGo" output_path = r"E:\research\seq\SlotFilling\MultiDoGo" for dataset in os.listdir(input_path): input_data_path = os.path.join(input_path, dataset) output_data_path = os.path.join(output_path, dataset) serial_proc = SerialPreprocessor( SerialConfig( input_data_path, output_data_path, TASK, logger_name=TASK, task_bos_token=f"[{TASK}]", prompt_func=const_prompt_func_wrapper( "With given utterance, fill the slots." ), knowledge_func=None_knowledge, label_func=extract_slots_without_intents_wrapper(", ", " | "), ) ) serial_proc.launch()