""" Several preprocessor classes. Author: md """ from preprocessor.base import BasePreprocessorConfig, BasePreprocessor from const import ( DIALOGUE_SUMMARY, DIALOGUE_CONTEXT_TO_RESPONSE_GENERATION, DIALOG, KNOWLEDGE, UTTERANCE, ROLES, EMOTION_RECOGNITION, VALUE, ABSA, CHARACTER_IDENTIFICATION, DIALOGUE_STATE_TRACKING, DOCUMENT_GROUNDED_CONVERSATION, TEXT2SQL, SLOT_FILLING, ROLE_RELATION_RECOGNITION, QUESTION_IN_CONTEXT_REWRITING, NATURAL_LANGUAGE_INFERENCE, MACHINE_READING_COMPREHENSION, MULTIPLE_CHOICE_QUESTION_ANSWERING, INTENT_DETECTION, DATA_TO_TEXT, CHIT_CHAT, TRAIN_SPLIT, ) from typing import Dict, List, Callable from copy import deepcopy class SerialConfig(BasePreprocessorConfig): def __init__( self, input_dir: str, output_dir: str, task: str, task_bos_token: str = "", knowledge_bos_token: str = "[EK]", prompt_bos_token: str = "[C]", use_role: bool = True, turn_sep: str = None, roles_to_build_example: List = None, dev_and_test_roles_to_build_example: List = None, prompt_func: Callable = None, knowledge_func: Callable = None, label_func: Callable = None, turn_knowledge_func: Callable = None, roles_in_history: List[List] = None, cur_turn_process_func: Callable = None, all_turns_process_func: Callable = None, multi_ref_sep: str = None, *args, **kwargs, ) -> None: super().__init__(input_dir, output_dir, task, *args, **kwargs) self.use_role = use_role self.turn_sep = turn_sep self.roles_to_build_example = roles_to_build_example self.prompt_func = prompt_func self.task_bos_token = task_bos_token self.knowledge_bos_token = knowledge_bos_token self.prompt_bos_token = prompt_bos_token self.knowledge_func = knowledge_func self.label_func = label_func self.turn_knowledge_func = turn_knowledge_func self.roles_in_history = roles_in_history self.multi_ref_sep = multi_ref_sep self.dev_and_test_roles_to_build_example = dev_and_test_roles_to_build_example self.cur_turn_process_func = cur_turn_process_func self.all_turns_process_func = all_turns_process_func def concat_roles(roles): return ", ".join(roles) def concat_dial_history(config: SerialConfig, history: List[Dict]): # utterance_list = [ # f"{concat_roles(turn[ROLES])}: {turn[UTTERANCE].strip()}" # if config.use_role # else turn[UTTERANCE].strip() # for turn in history # ] utterance_list = [] for turn in history: if ( config.roles_in_history is not None and turn[ROLES] not in config.roles_in_history ): continue if config.use_role: utterance_list.append( f"{concat_roles(turn[ROLES])}: {turn[UTTERANCE].strip()}" ) else: utterance_list.append(turn[UTTERANCE].strip()) if not utterance_list: return "None" turn_sep = " " if config.turn_sep is not None: turn_sep = f" {config.turn_sep} " return turn_sep.join(utterance_list) def concat_history_knowledge_prompt( config: SerialConfig, history: str, knowledge: str = "", prompt: str = "" ): """Concat `history`, `knowledge` and `prompt`. NOTE: the order is fixed now. """ text = "" if config.task_bos_token is not None: text = f"{config.task_bos_token} " text += history if knowledge is not None: text += f" {config.knowledge_bos_token} {knowledge}" if prompt is not None: text += f" {config.prompt_bos_token} {prompt}" return text def clean(text): return text.replace("\r\n", " ").replace("\n", " ").replace("\r", " ") def add_prefix_to_label(prefix, split, label): tgt = f"{prefix} {label}" if split == "train" else label return tgt class SerialPreprocessor(BasePreprocessor): def __init__(self, config: SerialConfig) -> None: super().__init__(config) def extract_knowledge(self, example: Dict): if self.config.knowledge_func is None: knowledge = None elif ( KNOWLEDGE not in example or not self.config.knowledge_func.__code__.co_argcount ): knowledge = self.config.knowledge_func() else: knowledge = self.config.knowledge_func(example[KNOWLEDGE][VALUE]) return knowledge def preprocess_for_dialogue_level(self, split: str, example: Dict, knowledge: str): label = self.config.label_func(example) tgt = add_prefix_to_label(self.config.task_bos_token, split, label) history = concat_dial_history(self.config, example[DIALOG]) if self.config.prompt_func is None: prompt = "" elif not self.config.prompt_func.__code__.co_argcount: prompt = self.config.prompt_func() src = concat_history_knowledge_prompt(self.config, history, knowledge, prompt) return [{"src": clean(src), "tgt": clean(tgt)}] def preprocess_for_label_level(self, split: str, example: Dict, knowledge: str): label_generator = self.config.label_func(example) examples = [] for turn_id, label, extra_args in label_generator: tgt = add_prefix_to_label(self.config.task_bos_token, split, label) hist = deepcopy(example[DIALOG]) if self.config.all_turns_process_func is not None: hist[turn_id] = self.config.all_turns_process_func( hist[turn_id], *extra_args ) history = concat_dial_history(self.config, hist) if self.config.prompt_func is None: prompt = "" elif not self.config.prompt_func.__code__.co_argcount: prompt = self.config.prompt_func() src = concat_history_knowledge_prompt( self.config, history, knowledge, prompt ) examples.append({"src": clean(src), "tgt": clean(tgt)}) return examples def get_label( self, turn, include_current_turn, turn_idx, split, origin_knowledge=None ): # skip the roles not requiring to build examples if ( split != TRAIN_SPLIT and self.config.dev_and_test_roles_to_build_example is not None ): roles_to_build_example = self.config.dev_and_test_roles_to_build_example else: roles_to_build_example = self.config.roles_to_build_example if ( roles_to_build_example is not None and turn[ROLES] not in roles_to_build_example ): return None # skip the first turn if not including current turn if not include_current_turn and turn_idx == 0: return None if self.config.task != DIALOGUE_STATE_TRACKING: try: label = self.config.label_func(turn, split=split) except: label = self.config.label_func(turn, origin_knowledge, split=split) else: label = self.config.label_func( turn, self.ontologies[split], do_train=(split == TRAIN_SPLIT) ) return label def preprocess_for_turn_level( self, split: str, example: Dict, knowledge: str, include_current_turn=False, origin_knowledge=None, ): examples = [] multiref = [] for turn_idx, turn in enumerate(example[DIALOG]): label = self.get_label( turn, include_current_turn, turn_idx, split, origin_knowledge ) if label is None: continue multiref.append(label) # requre to merge and arrive at the final consecutive label if ( self.config.multi_ref_sep is not None and split != "train" and turn_idx < len(example[DIALOG]) - 1 and self.get_label( example[DIALOG][turn_idx + 1], include_current_turn, turn_idx + 1, split, ) is not None ): continue if self.config.multi_ref_sep is not None and split != "train": label = self.config.multi_ref_sep.join(multiref) tgt = add_prefix_to_label(self.config.task_bos_token, split, label) end = (turn_idx + 1) if include_current_turn else turn_idx hist = deepcopy(example[DIALOG][:end]) if self.config.cur_turn_process_func is not None: hist[-1] = self.config.cur_turn_process_func(hist[-1]) history = concat_dial_history(self.config, hist) if self.config.prompt_func is None: prompt = "" elif not self.config.prompt_func.__code__.co_argcount: prompt = self.config.prompt_func() if self.config.turn_knowledge_func is not None: knowledge_to_use = self.config.turn_knowledge_func(knowledge, turn) else: knowledge_to_use = knowledge src = concat_history_knowledge_prompt( self.config, history, knowledge_to_use, prompt ) examples.append({"src": clean(src), "tgt": clean(tgt)}) multiref = [] return examples def preprocess_line(self, split: str, example: Dict) -> List[Dict]: knowledge = self.extract_knowledge(example) # 1. Dialogue Summary if self.config.task == DIALOGUE_SUMMARY: return self.preprocess_for_dialogue_level(split, example, knowledge) # 2. Emotion Recognition if self.config.task == EMOTION_RECOGNITION: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True ) # 3. Dialogue Context-to-Text Generation if self.config.task == DIALOGUE_CONTEXT_TO_RESPONSE_GENERATION: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=False ) # 4. ABSA if self.config.task.startswith(ABSA): return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True ) # 5. Character Identification if self.config.task == CHARACTER_IDENTIFICATION: # return self.preprocess_for_turn_level( # split, example, knowledge, include_current_turn=True # ) # return self.preprocess_for_dialogue_level(split, example, knowledge) return self.preprocess_for_label_level(split, example, knowledge) # 6. Dialogue State Tracking if self.config.task == DIALOGUE_STATE_TRACKING: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True ) # 7. Document Grounded Conversation if self.config.task == DOCUMENT_GROUNDED_CONVERSATION: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=False ) # 8. Text2SQL if self.config.task == TEXT2SQL: seq_examples = self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True ) for idx in range(len(seq_examples)): seq_examples[idx]["db_id"] = knowledge["db_id"] return seq_examples # 9. Slot Filling if self.config.task == SLOT_FILLING: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True ) # 10. Relation Recognition if self.config.task == ROLE_RELATION_RECOGNITION: return self.preprocess_for_dialogue_level(split, example, knowledge) # 11. Question in Context Rewriting if self.config.task == QUESTION_IN_CONTEXT_REWRITING: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True ) # 12. Natural Language Inference if self.config.task == NATURAL_LANGUAGE_INFERENCE: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True, origin_knowledge=example[KNOWLEDGE][VALUE], ) # 13. Machine Reading Comprehension if self.config.task == MACHINE_READING_COMPREHENSION: return self.preprocess_for_turn_level(split, example, knowledge) # 14. Multiple Choice Question Answering if self.config.task == MULTIPLE_CHOICE_QUESTION_ANSWERING: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True, origin_knowledge=example[KNOWLEDGE][VALUE], ) # 15. Intent Detection if self.config.task == INTENT_DETECTION: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True ) # 16. Data-to-Text if self.config.task == DATA_TO_TEXT: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True ) # 17. Chit-Chat if self.config.task == CHIT_CHAT: return self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=False ) if self.config.task == "Semantic Parsing": seq_examples = self.preprocess_for_turn_level( split, example, knowledge, include_current_turn=True ) return seq_examples