from typing import List, Dict, Optional, Tuple import random import difflib from rapidfuzz import fuzz import sqlite3 import functools from const import KNOWLEDGE_TO_SELECT, UTTERANCE, ROLES, BELIEF_STATE, DOMAIN def None_knowledge(): return "None" def concat_list_knowledge_wrapper(prompt: str = "", sep: str = " | "): def get_list_knowledge(str_list: List[str]): return prompt + sep.join(str_list) return get_list_knowledge def origin_knowledge(knowledge): return knowledge def extract_turn_knowledge( knowledge, section_prompt_op, section_sep, section_value_sep ): if isinstance(knowledge, dict): sec_list = [] for section in sorted(knowledge.keys()): sec_str = f"{section}{section_prompt_op}" if isinstance(knowledge[section], str): sec_str += knowledge[section] elif isinstance(knowledge[section], list): sec_str += section_value_sep.join(knowledge[section]) sec_list.append(sec_str) return section_sep.join(sec_list) elif isinstance(knowledge, str): return knowledge elif isinstance(knowledge, list): return ";; ".join( [ extract_turn_knowledge( sec, section_prompt_op, section_sep, section_value_sep ) for sec in knowledge ] ) def extract_turn_domains_wrapper(prompt: str = "", sep: str = ", "): def extract_turn_domains(knowledge, turn): bs = turn[BELIEF_STATE] domains = [] for state in bs: domain = state[DOMAIN] if domain not in domains: domains.append(domain) return prompt + sep.join(domains) return extract_turn_domains def extract_turn_knowledge_wrapper(section_prompt_op, section_sep, section_value_sep): def extract_turn_knowledge_func(knowledge, turn): return extract_turn_knowledge( [knowledge[sec] for sec in turn[KNOWLEDGE_TO_SELECT]], section_prompt_op, section_sep, section_value_sep, ) return extract_turn_knowledge_func # Text2SQL EXIST = {"atis", "geo", "advising", "yelp", "restaurants", "imdb", "academic"} # fmt: off _stopwords = {'who', 'ourselves', 'down', 'only', 'were', 'him', 'at', "weren't", 'has', 'few', "it's", 'm', 'again', 'd', 'haven', 'been', 'other', 'we', 'an', 'own', 'doing', 'ma', 'hers', 'all', "haven't", 'in', 'but', "shouldn't", 'does', 'out', 'aren', 'you', "you'd", 'himself', "isn't", 'most', 'y', 'below', 'is', "wasn't", 'hasn', 'them', 'wouldn', 'against', 'this', 'about', 'there', 'don', "that'll", 'a', 'being', 'with', 'your', 'theirs', 'its', 'any', 'why', 'now', 'during', 'weren', 'if', 'should', 'those', 'be', 'they', 'o', 't', 'of', 'or', 'me', 'i', 'some', 'her', 'do', 'will', 'yours', 'for', 'mightn', 'nor', 'needn', 'the', 'until', "couldn't", 'he', 'which', 'yourself', 'to', "needn't", "you're", 'because', 'their', 'where', 'it', "didn't", 've', 'whom', "should've", 'can', "shan't", 'on', 'had', 'have', 'myself', 'am', "don't", 'under', 'was', "won't", 'these', 'so', 'as', 'after', 'above', 'each', 'ours', 'hadn', 'having', 'wasn', 's', 'doesn', "hadn't", 'than', 'by', 'that', 'both', 'herself', 'his', "wouldn't", 'into', "doesn't", 'before', 'my', 'won', 'more', 'are', 'through', 'same', 'how', 'what', 'over', 'll', 'yourselves', 'up', 'mustn', "mustn't", "she's", 're', 'such', 'didn', "you'll", 'shan', 'when', "you've", 'themselves', "mightn't", 'she', 'from', 'isn', 'ain', 'between', 'once', 'here', 'shouldn', 'our', 'and', 'not', 'too', 'very', 'further', 'while', 'off', 'couldn', "hasn't", 'itself', 'then', 'did', 'just', "aren't"} # fmt: on _commonwords = {"no", "yes", "many"} def is_number(s: str) -> bool: try: float(s.replace(",", "")) return True except: return False def is_stopword(s: str) -> bool: return s.strip() in _stopwords def is_commonword(s: str) -> bool: return s.strip() in _commonwords def is_common_db_term(s: str) -> bool: return s.strip() in ["id"] class Match(object): def __init__(self, start: int, size: int) -> None: self.start = start self.size = size def is_span_separator(c: str) -> bool: return c in "'\"()`,.?! " def split(s: str) -> List[str]: return [c.lower() for c in s.strip()] def prefix_match(s1: str, s2: str) -> bool: i, j = 0, 0 for i in range(len(s1)): if not is_span_separator(s1[i]): break for j in range(len(s2)): if not is_span_separator(s2[j]): break if i < len(s1) and j < len(s2): return s1[i] == s2[j] elif i >= len(s1) and j >= len(s2): return True else: return False def get_effective_match_source(s: str, start: int, end: int) -> Match: _start = -1 for i in range(start, start - 2, -1): if i < 0: _start = i + 1 break if is_span_separator(s[i]): _start = i break if _start < 0: return None _end = -1 for i in range(end - 1, end + 3): if i >= len(s): _end = i - 1 break if is_span_separator(s[i]): _end = i break if _end < 0: return None while _start < len(s) and is_span_separator(s[_start]): _start += 1 while _end >= 0 and is_span_separator(s[_end]): _end -= 1 return Match(_start, _end - _start + 1) def get_matched_entries( s: str, field_values: List[str], m_theta: float = 0.85, s_theta: float = 0.85 ) -> Optional[List[Tuple[str, Tuple[str, str, float, float, int]]]]: if not field_values: return None if isinstance(s, str): n_grams = split(s) else: n_grams = s matched = dict() for field_value in field_values: if not isinstance(field_value, str): continue fv_tokens = split(field_value) sm = difflib.SequenceMatcher(None, n_grams, fv_tokens) match = sm.find_longest_match(0, len(n_grams), 0, len(fv_tokens)) if match.size > 0: source_match = get_effective_match_source( n_grams, match.a, match.a + match.size ) if source_match and source_match.size > 1: match_str = field_value[match.b : match.b + match.size] source_match_str = s[ source_match.start : source_match.start + source_match.size ] c_match_str = match_str.lower().strip() c_source_match_str = source_match_str.lower().strip() c_field_value = field_value.lower().strip() if ( c_match_str and not is_number(c_match_str) and not is_common_db_term(c_match_str) ): if ( is_stopword(c_match_str) or is_stopword(c_source_match_str) or is_stopword(c_field_value) ): continue if c_source_match_str.endswith(c_match_str + "'s"): match_score = 1.0 else: if prefix_match(c_field_value, c_source_match_str): match_score = ( fuzz.ratio(c_field_value, c_source_match_str) / 100 ) else: match_score = 0 if ( is_commonword(c_match_str) or is_commonword(c_source_match_str) or is_commonword(c_field_value) ) and match_score < 1: continue s_match_score = match_score if match_score >= m_theta and s_match_score >= s_theta: if field_value.isupper() and match_score * s_match_score < 1: continue matched[match_str] = ( field_value, source_match_str, match_score, s_match_score, match.size, ) if not matched: return None else: return sorted( matched.items(), key=lambda x: (1e16 * x[1][2] + 1e8 * x[1][3] + x[1][4]), reverse=True, ) @functools.lru_cache(maxsize=1000, typed=False) def get_column_picklist(table_name: str, column_name: str, db_path: str) -> list: fetch_sql = "SELECT DISTINCT `{}` FROM `{}`".format(column_name, table_name) try: conn = sqlite3.connect(db_path) conn.text_factory = bytes c = conn.cursor() c.execute(fetch_sql) picklist = set() for x in c.fetchall(): if isinstance(x[0], str): picklist.add(x[0].encode("utf-8")) elif isinstance(x[0], bytes): try: picklist.add(x[0].decode("utf-8")) except UnicodeDecodeError: picklist.add(x[0].decode("latin-1")) else: picklist.add(x[0]) picklist = list(picklist) finally: conn.close() return picklist def get_database_matches( question: str, table_name: str, column_name: str, db_path: str, top_k_matches: int = 2, match_threshold: float = 0.85, ) -> List[str]: picklist = get_column_picklist( table_name=table_name, column_name=column_name, db_path=db_path ) matches = [] if picklist and isinstance(picklist[0], str): matched_entries = get_matched_entries( s=question, field_values=picklist, m_theta=match_threshold, s_theta=match_threshold, ) if matched_entries: num_values_inserted = 0 for _match_str, ( field_value, _s_match_str, match_score, s_match_score, _match_size, ) in matched_entries: if "name" in column_name and match_score * s_match_score < 1: continue if table_name != "sqlite_sequence": # Spider database artifact matches.append(field_value) num_values_inserted += 1 if num_values_inserted >= top_k_matches: break return matches def serialize_schema( question: str, db_path: str, db_id: str, db_column_names: Dict[str, str], db_table_names: List[str], schema_serialization_type: str = "peteshaw", schema_serialization_randomized: bool = False, schema_serialization_with_db_id: bool = True, schema_serialization_with_db_content: bool = False, normalize_query: bool = True, ) -> str: if schema_serialization_type == "verbose": db_id_str = "Database: {db_id}. " table_sep = ". " table_str = "Table: {table}. Columns: {columns}" column_sep = ", " column_str_with_values = "{column} ({values})" column_str_without_values = "{column}" value_sep = ", " elif schema_serialization_type == "peteshaw": # see https://github.com/google-research/language/blob/master/language/nqg/tasks/spider/append_schema.py#L42 db_id_str = "{db_id}" table_sep = "" table_str = " | {table} : {columns}" column_sep = " , " column_str_with_values = "{column} ( {values} )" column_str_without_values = "{column}" value_sep = " , " else: raise NotImplementedError def get_column_str(table_name: str, column_name: str) -> str: column_name_str = column_name.lower() if normalize_query else column_name if schema_serialization_with_db_content: matches = get_database_matches( question=question, table_name=table_name, column_name=column_name, db_path=(db_path + "/" + db_id + "/" + db_id + ".sqlite"), ) if matches: return column_str_with_values.format( column=column_name_str, values=value_sep.join(matches) ) else: return column_str_without_values.format(column=column_name_str) else: return column_str_without_values.format(column=column_name_str) tables = [ table_str.format( table=table_name.lower() if normalize_query else table_name, columns=column_sep.join( map( lambda y: get_column_str(table_name=table_name, column_name=y[1]), filter( lambda y: y[0] == table_id, zip( db_column_names["table_id"], db_column_names["column_name"], ), ), ) ), ) for table_id, table_name in enumerate(db_table_names) ] if schema_serialization_randomized: random.shuffle(tables) if schema_serialization_with_db_id: serialized_schema = db_id_str.format(db_id=db_id) + table_sep.join(tables) else: serialized_schema = table_sep.join(tables) return serialized_schema def extract_schema_knowledge_wrapper( schema_serialization_type: str = "peteshaw", schema_serialization_randomized: bool = False, schema_serialization_with_db_id: bool = True, schema_serialization_with_db_content: bool = False, normalize_query: bool = True, ): def extract_turn_schema_knowledge_func(knowledge, turn): schema = knowledge["schema"] db_column_names = { "table_id": [table_id for table_id, _ in schema["column_names_original"]], "column_name": [ column_name for _, column_name in schema["column_names_original"] ], } return serialize_schema( turn[UTTERANCE], knowledge["db_path"], knowledge["db_id"], db_column_names, schema["table_names_original"], schema_serialization_type, schema_serialization_randomized, schema_serialization_with_db_id, schema_serialization_with_db_content, normalize_query, ) return extract_turn_schema_knowledge_func def extract_dict_knowledge(knowledge, key_prompt_op, pair_sep): pair_list = [] for key in knowledge: pair_list.append(f"{key}{key_prompt_op}{knowledge[key]}") if not pair_list: return "None" return pair_sep.join(pair_list) def extract_dict_knowledge_wrapper(key_prompt_op, pair_sep): def extract_dict_knowledge_func(knowledge): return extract_dict_knowledge(knowledge, key_prompt_op, pair_sep) return extract_dict_knowledge_func def extract_dialogue_knowledge(knowledge, key_prompt_op, pair_sep, role_sep): pair_list = [] for key in knowledge: if isinstance(knowledge[key], str): pair_list.append(f"{key}{key_prompt_op}{knowledge[key]}") elif isinstance(knowledge[key], list): turns = [] for turn in knowledge[key]: role_str = role_sep.join(turn[ROLES]) turns.append(f"{role_str}# {turn[UTTERANCE]}") dial_str = " ".join(turns) pair_list.append(f"{key}{key_prompt_op}{dial_str}") if not pair_list: return "None" return pair_sep.join(pair_list) def extract_dialogue_knowledge_wrapper(key_prompt_op, pair_sep, role_sep): def extract_dialogue_knowledge_func(knowledge): return extract_dialogue_knowledge(knowledge, key_prompt_op, pair_sep, role_sep) return extract_dialogue_knowledge_func def extract_kg_knowledge( knowledge, key_prompt_op, pair_sep, intra_edge_sep, inner_edge_sep ): pair_list = [] for key in knowledge: if isinstance(knowledge[key], str): pair_list.append(f"{key}{key_prompt_op}{knowledge[key]}") elif isinstance(knowledge[key], list): edges = [] for edge in knowledge[key]: edges.append(inner_edge_sep.join(edge)) kg_str = intra_edge_sep.join(edges) pair_list.append(f"{key}{key_prompt_op}{kg_str}") if not pair_list: return "None" return pair_sep.join(pair_list) def extract_kg_knowledge_wrapper( key_prompt_op, pair_sep, intra_edge_sep, inner_edge_sep ): def extract_kg_knowledge_func(knowledge): return extract_kg_knowledge( knowledge, key_prompt_op, pair_sep, intra_edge_sep, inner_edge_sep ) return extract_kg_knowledge_func