#!/bin/bash SOURCE_DIR=../../data/unified TARGET_DIR=../../data/seq if [ ! -d "${TARGET_DIR}" ]; then mkdir -p ${TARGET_DIR} fi # DSTC 2 python DST.py ${SOURCE_DIR}/DSTC2 ${TARGET_DIR}/DST-DSTC2 # sim-M python DST.py ${SOURCE_DIR}/sim-M ${TARGET_DIR}/DST-sim-M # sim-R python DST.py ${SOURCE_DIR}/sim-R ${TARGET_DIR}/DST-sim-R # MultiWOZ 2.2 python DST.py ${SOURCE_DIR}/MultiWOZ_2.2 ${TARGET_DIR}/DST-MultiWOZ_2.2 # SGD python DST.py ${SOURCE_DIR}/SGD ${TARGET_DIR}/DST-SGD # MultiWOZ 2.1 python DST.py ${SOURCE_DIR}/MultiWOZ_2.1 ${TARGET_DIR}/DST-MultiWOZ_2.1 # Spider python T2S.py ${SOURCE_DIR}/Spider ${TARGET_DIR}/T2S-Spider # SParC python T2S.py ${SOURCE_DIR}/SParC ${TARGET_DIR}/T2S-SParC # CoSQL python T2S.py ${SOURCE_DIR}/CoSQL ${TARGET_DIR}/T2S-CoSQL # MultiDoGo for domain in `ls ${SOURCE_DIR}/MultiDoGo`; do python SF.py ${SOURCE_DIR}/MultiDoGo/${domain} ${TARGET_DIR}/SF-MultiDoGo-${domain} done # Restaurant8k python SF.py ${SOURCE_DIR}/Restaurant8k ${TARGET_DIR}/SF-Restaurant8k # SNIPS for domain in `ls ${SOURCE_DIR}/SNIPS`; do python SF.py ${SOURCE_DIR}/SNIPS/${domain} ${TARGET_DIR}/SF-SNIPS-${domain} done # DDRel python RRR.py ${SOURCE_DIR}/DDRel ${TARGET_DIR}/RRR-DDRel # CamRest676 python QCR.py ${SOURCE_DIR}/CamRest676 ${TARGET_DIR}/QCR-CamRest676 # CANARD python QCR.py ${SOURCE_DIR}/CANARD ${TARGET_DIR}/QCR-CANARD "knowledge" # AlphaNLI python NLI.py ${SOURCE_DIR}/AlphaNLI ${TARGET_DIR}/NLI-AlphaNLI # CoQA python MRC.py ${SOURCE_DIR}/CoQA ${TARGET_DIR}/MRC-CoQA # DoQA python MRC.py ${SOURCE_DIR}/DoQA ${TARGET_DIR}/MRC-DoQA # FriendsQA python MRC.py ${SOURCE_DIR}/FriendsQA ${TARGET_DIR}/MRC-FriendsQA # Molweni python MRC.py ${SOURCE_DIR}/Molweni ${TARGET_DIR}/MRC-Molweni # QuAC python MRC.py ${SOURCE_DIR}/QuAC ${TARGET_DIR}/MRC-QuAC # SQuAD 2.0 python MRC.py ${SOURCE_DIR}/SQuAD_2.0 ${TARGET_DIR}/MRC-SQuAD_2.0 # CommonsenseQA python MCQA.py ${SOURCE_DIR}/CommonsenseQA ${TARGET_DIR}/MCQA-CommonsenseQA # CommonsenseQA 2.0 python MCQA.py ${SOURCE_DIR}/CommonsenseQA_2.0 ${TARGET_DIR}/MCQA-CommonsenseQA_2.0 # CosmosQA python MCQA.py ${SOURCE_DIR}/CosmosQA ${TARGET_DIR}/MCQA-CosmosQA # DREAM python MCQA.py ${SOURCE_DIR}/DREAM ${TARGET_DIR}/MCQA-DREAM # MuTual python MCQA.py ${SOURCE_DIR}/MuTual/mutual ${TARGET_DIR}/MCQA-Mutual # MuTual-plus python MCQA.py ${SOURCE_DIR}/MuTual/mutual_plus ${TARGET_DIR}/MCQA-Mutual-plus # RACE python MCQA.py ${SOURCE_DIR}/RACE/high ${TARGET_DIR}/MCQA-RACE-high python MCQA.py ${SOURCE_DIR}/RACE/middle ${TARGET_DIR}/MCQA-RACE-middle # PCMD python MCQA.py ${SOURCE_DIR}/PCMD ${TARGET_DIR}/MCQA-PCMD # SocialIQA python MCQA.py ${SOURCE_DIR}/SocialIQA ${TARGET_DIR}/MCQA-SocialIQA # DialogSum python DS.py ${SOURCE_DIR}/DialogSum ${TARGET_DIR}/DS-DialogSum # SAMSum python DS.py ${SOURCE_DIR}/SAMSum ${TARGET_DIR}/DS-SAMSum # CMUDoG python DCRG.py ${SOURCE_DIR}/CMUDoG ${TARGET_DIR}/DCRG-CMUDoG "turn-document" # CommonsenseDialog python DCRG.py ${SOURCE_DIR}/CommonsenseDialog ${TARGET_DIR}/DCRG-CommonsenseDialog "document" # EmpathicDialogue python DCRG.py ${SOURCE_DIR}/EmpathicDialogue ${TARGET_DIR}/DCRG-EmpathicDialogue "document" # NarrativeQA python DCRG.py ${SOURCE_DIR}/NarrativeQA ${TARGET_DIR}/DCRG-NarrativeQA "document" multi-ref # Soccer python DCRG.py ${SOURCE_DIR}/Soccer ${TARGET_DIR}/DCRG-Soccer "kg" # Incar python DCRG.py ${SOURCE_DIR}/Incar ${TARGET_DIR}/DCRG-Incar "kg" # CornellMovie python DCRG.py ${SOURCE_DIR}/CornellMovie ${TARGET_DIR}/DCRG-CornellMovie "None" # DailyDialog python ER.py ${SOURCE_DIR}/DailyDialog ${TARGET_DIR}/ER-DailyDialog # EmoryNLP python ER.py ${SOURCE_DIR}/EmoryNLP ${TARGET_DIR}/ER-EmoryNLP # GoEmotions python ER.py ${SOURCE_DIR}/GoEmotions ${TARGET_DIR}/ER-GoEmotions # MELD python ER.py ${SOURCE_DIR}/MELD ${TARGET_DIR}/ER-MELD # IEMOCAP python ER.py ${SOURCE_DIR}/IEMOCAP ${TARGET_DIR}/ER-IEMOCAP # Banking77 python ID.py ${SOURCE_DIR}/Banking77 ${TARGET_DIR}/ID-Banking77 # CLINC150 python ID.py ${SOURCE_DIR}/CLINC150 ${TARGET_DIR}/ID-CLINC150 # HWU64 python ID.py ${SOURCE_DIR}/HWU64 ${TARGET_DIR}/ID-HWU64 # E2E python DT.py ${SOURCE_DIR}/E2E ${TARGET_DIR}/DT-E2E # RNNLG for domain in `ls ${SOURCE_DIR}/RNNLG`; do python DT.py ${SOURCE_DIR}/RNNLG/${domain} ${TARGET_DIR}/DT-RNNLG-${domain} done # PERSONA-CHAT for dataset in `ls ${SOURCE_DIR}/PERSONA-CHAT`; do python CC.py ${SOURCE_DIR}/PERSONA-CHAT/${dataset} ${TARGET_DIR}/CC-PERSONA-CHAT-${dataset} done # ENLP python CI.py ${SOURCE_DIR}/ENLP ${TARGET_DIR}/CI-ENLP # ASTE for domain in `ls ${SOURCE_DIR}/ASTE`; do python ABSA.py ${SOURCE_DIR}/ASTE/${domain} ${TARGET_DIR}/ABSA-ASTE-${domain} done # MAMS-ACSA python ABSA.py ${SOURCE_DIR}/MAMS-ACSA ${TARGET_DIR}/ABSA-MAMS-ACSA # MAMS-ATSA python ABSA.py ${SOURCE_DIR}/MAMS-ATSA ${TARGET_DIR}/ABSA-MAMS-ATSA # Twitter python ABSA.py ${SOURCE_DIR}/Twitter ${TARGET_DIR}/ABSA-Twitter