from const import ( SUMMARY, EMOTIONS, EMOTION, UTTERANCE, ASPECTS, TARGET, VALUE, OPINION, SENTIMENT, CATEGORY, CHARACTERS, DIALOG, START, END, BELIEF_STATE, DOMAIN, INFORMED_SLOT_VALUE_TABLE, SLOT, VALUES, RELATION, SQL, SLOT_VALUE_TABLE, SLOTS_TO_FILL, ROLE_RELATIONS, REWRITTEN, ROLES_TO_SELECT, ACTIVE_INTENTS, TRAIN_SPLIT, OPTION_LABEL, CANDIDATES, ) from typing import Dict import re import random import copy import json def extract_summary(dial: Dict, **kwargs): """ `dial` is the full dialog. """ return dial[SUMMARY] def extract_turn_emotion(turn: Dict, sep: str, **kwargs): if EMOTIONS not in turn: return None return sep.join(map(lambda x: x[EMOTION], turn[EMOTIONS])) def extract_turn_emotion_wrapper(sep: str): def extract_turn_emotion_func(turn: Dict, **kwargs): return extract_turn_emotion(turn, sep) return extract_turn_emotion_func def extract_turn_utterance(turn: Dict, **kwargs): return turn[UTTERANCE] def extract_aspects(turn: Dict, ext_aspect_sep: str, int_aspect_sep: str): if not turn[ASPECTS]: return "None" aspects = turn[ASPECTS] tgt_seq = [] for aspect in aspects: aspect_seq = [] if TARGET in aspect: aspect_seq.append(aspect[TARGET][VALUE]) if CATEGORY in aspect: aspect_seq.append(aspect[CATEGORY]) if OPINION in aspect: aspect_seq.append(aspect[OPINION][VALUE]) if SENTIMENT in aspect: aspect_seq.append(aspect[SENTIMENT]) tgt_seq.append(int_aspect_sep.join(aspect_seq)) return ext_aspect_sep.join(tgt_seq) def extract_aspects_wrapper(ext_aspect_sep: str, int_aspect_sep: str): def extract_aspects_func(turn: Dict, **kwargs): return extract_aspects(turn, ext_aspect_sep, int_aspect_sep) return extract_aspects_func def rebuild_utterance_with_characters(turn: Dict, split): if split == "train": utterance = turn[UTTERANCE] parts = [] pre = 0 for character in turn[CHARACTERS]: parts.append(utterance[pre : character[START]]) parts.append( f"[{utterance[character[START]: character[END]]} | {character[VALUE]}]" ) pre = character[END] parts.append(utterance[pre:]) return "".join(parts) else: tuples = [] for character in turn[CHARACTERS]: tuples.append(f"{character[VALUE]}, {character[START]}, {character[END]}") if not tuples: return "None" return " | ".join(tuples) def extract_characters(example): for turn_id, turn in enumerate(example[DIALOG]): if CHARACTERS not in turn: continue for character in turn[CHARACTERS]: yield turn_id, character[VALUE], (character[END],) def extract_belief_state( turn, value_sep, domain_sep, slot_sep, domain_prompt_op, ontology=None, do_train=True, ): domain_bs = dict() bs = turn[BELIEF_STATE] # spare_bs = {domain: {slot for slot in ontology[domain]} for domain in ontology} for state in bs: domain = state[DOMAIN] if domain not in domain_bs: domain_bs[domain] = dict() if INFORMED_SLOT_VALUE_TABLE not in state: continue for svp in state[INFORMED_SLOT_VALUE_TABLE]: slot = svp[SLOT] values = svp[VALUES] relation = svp[RELATION] if slot not in domain_bs[domain]: domain_bs[domain][slot] = {"relation": relation, "values": []} domain_bs[domain][slot]["values"] += list(map(lambda x: x[VALUE], values)) # spare_bs[domain].remove(slot) domain_bs_list = [] for domain in domain_bs: svp_list = [] for slot in domain_bs[domain]: val_str = value_sep.join(domain_bs[domain][slot]["values"]) svp_list.append(f"{slot} {domain_bs[domain][slot]['relation']} {val_str}") # control whether to add spare slots # for slot in sorted(spare_bs[domain]): # svp_list.append(f"{slot} = None") if not svp_list: continue if do_train: # shuffle for training random.shuffle(svp_list) # append a slot separator at the end to alleviate the problem of end point prediction of T5 svt_str = slot_sep.join(svp_list) + slot_sep domain_bs_list.append(f"{domain}{domain_prompt_op}{svt_str.strip()}") if not domain_bs_list: return "None" return domain_sep.join(domain_bs_list) def extract_belief_state_wrapper(value_sep, domain_sep, slot_sep, domain_prompt_op): def extract_belief_state_func(turn, ontology, do_train=True, **kwargs): return extract_belief_state( turn, value_sep, domain_sep, slot_sep, domain_prompt_op, ontology, do_train=do_train, ) return extract_belief_state_func def normalize(query: str) -> str: def comma_fix(s): # Remove spaces in front of commas return s.replace(" , ", ", ") def white_space_fix(s): # Remove double and triple spaces return " ".join(s.split()) def lower(s): # Convert everything except text between (single or double) quotation marks to lower case return re.sub( r"\b(?|<|!)\s=)", lambda match: match.group(0).replace(" ", ""), sql, ) return double_chars_op_fix(brackets_fix(agg_fix(sql))) return space_fix(comma_fix(white_space_fix(lower(query)))) def extract_sql(turn, split): if SQL not in turn: return None _normalize = normalize if split == "train" else (lambda x: x) return _normalize(turn[SQL]) def extract_slots_without_intents(turn, value_sep, slot_sep): if SLOTS_TO_FILL not in turn or not turn[SLOTS_TO_FILL][SLOT_VALUE_TABLE]: return "None" slots = [] for svp in turn[SLOTS_TO_FILL][SLOT_VALUE_TABLE]: slots.append( svp[SLOT] + " " + svp[RELATION] + " " + value_sep.join(map(lambda x: x[VALUE], svp[VALUES])) ) return (slot_sep.join(slots) + slot_sep).strip() def extract_slots_without_intents_wrapper(value_sep, slot_sep): def extract_slots_without_intents_func(turn, **kwargs): return extract_slots_without_intents(turn, value_sep, slot_sep) return extract_slots_without_intents_func def extract_role_relation_without_turn(dialog, relation_sep): return relation_sep.join(map(lambda x: x[RELATION], dialog[ROLE_RELATIONS])) def extract_role_relation_without_turn_wrapper(relation_sep): def extract_role_relation_without_turn_func(dialog, **kwargs): return extract_role_relation_without_turn(dialog, relation_sep) return extract_role_relation_without_turn_func def extrac_rewritten(turn, **kwargs): if REWRITTEN not in turn: return None return turn[REWRITTEN] def extract_options(turn, knowledge, split=None): if ROLES_TO_SELECT not in turn: return None if split == TRAIN_SPLIT: return knowledge[turn[ROLES_TO_SELECT][0]] else: return json.dumps( {OPTION_LABEL: turn[ROLES_TO_SELECT][0], CANDIDATES: knowledge} ) # def extract_roles_wrapper(role_sep): # def extract_roles_func(turn, knowledge, split=None): # return extract_options(turn, know) # return extract_roles_func def extract_intents(turn, intent_sep): if not turn[ACTIVE_INTENTS]: return "None" return intent_sep.join( map(lambda intent: intent.replace("_", " "), turn[ACTIVE_INTENTS]) ) def extract_intents_wrapper(intent_sep): def extract_intents_func(turn, **kwargs): return extract_intents(turn, intent_sep) return extract_intents_func