from utils import read_jsonl_file, write_jsonl_file, parse, read_line_labels import os import copy label2nl = {"1": "First", "2": "Second"} def preprocess_for_train_and_dev(args, file): data_path = os.path.join(args.input_dir, f"{file}.jsonl") data = read_jsonl_file(data_path) label_path = os.path.join(args.input_dir, f"{file}-labels.lst") labels = read_line_labels(label_path) turns = [] for idx, example in enumerate(data): turn = { "turn": "multi", "locale": "en", "dialog": [ {"roles": ["First observation"], "utterance": example["obs1"]}, { "roles": ["Second observation"], "utterance": example["obs2"], "roles_to_select": [f"hypothesis candidate {labels[idx]}"], }, ], } # turn["dialog"].append( # { # "roles": ["First hypothesis"], # "utterance": example["hyp1"], # } # ) # turn["dialog"].append( # { # "roles": ["Second hypothesis"], # "utterance": example["hyp2"], # "roles_to_select": [label2nl[labels[idx]] + " hypothesis"], # } # ) turn["knowledge"] = { "type": "text", "value": { "hypothesis candidate 1": example["hyp1"], "hypothesis candidate 2": example["hyp2"], }, } # turn["roles_to_select"] = ["HYPOTHESIS " + labels[idx]] turns.append(turn) # if labels[idx] == "1": # pos_hyp = example["hyp1"] # neg_hyp = example["hyp2"] # else: # pos_hyp = example["hyp2"] # neg_hyp = example["hyp1"] # # possitive hypothesis # pos_turn = copy.deepcopy(turn) # pos_turn["dialog"].append({"roles": ["HYPOTHESIS"], "utterance": pos_hyp, "class_label": True}) # # negative hypothesis # neg_turn = copy.deepcopy(turn) # neg_turn["dialog"].append({"roles": ["HYPOTHESIS"], "utterance": neg_hyp, "class_label": False}) # turns.append(pos_turn) # turns.append(neg_turn) write_jsonl_file(turns, os.path.join(args.output_dir, f"{file}.jsonl")) def preprocess(args): preprocess_for_train_and_dev(args, "train") preprocess_for_train_and_dev(args, "dev") if __name__ == "__main__": args = parse() preprocess(args)