glecorve commited on
Commit
51b342e
1 Parent(s): 04099b1

Removed loading script

Browse files
Files changed (1) hide show
  1. csqa-sparqltotext.py +0 -239
csqa-sparqltotext.py DELETED
@@ -1,239 +0,0 @@
1
-
2
- import os
3
-
4
- import json
5
-
6
- import datasets
7
- from typing import Any
8
-
9
- import sys
10
-
11
-
12
-
13
- _CITATION = """\
14
- @inproceedings{lecorve2022sparql2text,
15
- title={Coqar: Question rewriting on coqa},
16
- author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
17
- journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
18
- year={2022}
19
- }
20
- """
21
-
22
- _HOMEPAGE = ""
23
-
24
- _DESCRIPTION = """\
25
- Special version of CSQA for the SPARQL-to-Text task
26
- """
27
-
28
- _URLS = {
29
- "all": "json/csqa_sparql_to_text.tar.gz"
30
- }
31
-
32
- class CSQA(datasets.GeneratorBasedBuilder):
33
- """
34
- Complex Sequential Question Answering dataset
35
- """
36
-
37
- VERSION = datasets.Version("1.0.0")
38
-
39
- def _info(self):
40
- return datasets.DatasetInfo(
41
- # This is the description that will appear on the datasets page.
42
- description=_DESCRIPTION,
43
- # datasets.features.FeatureConnectors
44
- #"active_set"
45
- #"all_entities"
46
- #"bool_ques_type"
47
- #"count_ques_sub_type"
48
- #"count_ques_type"
49
- #"description"
50
- #"entities"
51
- #"entities_in_utterance"
52
- #"gold_actions"
53
- #"inc_ques_type"
54
- #"is_inc"
55
- #"is_incomplete"
56
- #"is_spurious"
57
- #"masked_verbalized_answer"
58
- #"parsed_active_set"
59
- #"ques_type_id"
60
- #"question-type"
61
- #"relations"
62
- #"sec_ques_sub_type"
63
- #"sec_ques_type"
64
- #"set_op_choice"
65
- #"set_op"
66
- #"sparql_query"
67
- #"speaker"
68
- #"type_list"
69
- #"utterance"
70
- #"utterance"
71
- #"verbalized_all_entities"
72
- #"verbalized_answer"
73
- #"verbalized_entities_in_utterance"
74
- #"verbalized_gold_actions"
75
- #"verbalized_parsed_active_set"
76
- #"verbalized_sparql_query"
77
- #"verbalized_triple"
78
- #"verbalized_type_list"
79
- features=datasets.Features(
80
- {
81
- "id": datasets.Value("string"),
82
- "turns": [
83
- {
84
- "id": datasets.Value("int64"),
85
- "ques_type_id": datasets.Value("int64"),
86
- "question-type": datasets.Value("string"),
87
- "description": datasets.Value("string"),
88
- "entities_in_utterance": [datasets.Value("string")],
89
- "relations": [datasets.Value("string")],
90
- "type_list": [datasets.Value("string")],
91
- "speaker": datasets.Value("string"),
92
- "utterance": datasets.Value("string"),
93
- "all_entities": [datasets.Value("string")],
94
- "active_set": [datasets.Value("string")],
95
- 'sec_ques_sub_type': datasets.Value("int64"),
96
- 'sec_ques_type': datasets.Value("int64"),
97
- 'set_op_choice': datasets.Value("int64"),
98
- 'is_inc': datasets.Value("int64"),
99
- 'count_ques_sub_type': datasets.Value("int64"),
100
- 'count_ques_type': datasets.Value("int64"),
101
- 'is_incomplete': datasets.Value("int64"),
102
- 'inc_ques_type': datasets.Value("int64"),
103
- 'set_op': datasets.Value("int64"),
104
- 'bool_ques_type': datasets.Value("int64"),
105
- 'entities': [datasets.Value("string")],
106
- "clarification_step": datasets.Value("int64"),
107
- "gold_actions": [[datasets.Value("string")]],
108
- "is_spurious": datasets.Value("bool"),
109
- "masked_verbalized_answer": datasets.Value("string"),
110
- "parsed_active_set": [datasets.Value("string")],
111
- "sparql_query": datasets.Value("string"),
112
- "verbalized_all_entities": [datasets.Value("string")],
113
- "verbalized_answer": datasets.Value("string"),
114
- "verbalized_entities_in_utterance": [datasets.Value("string")],
115
- "verbalized_gold_actions": [[datasets.Value("string")]],
116
- "verbalized_parsed_active_set": [datasets.Value("string")],
117
- "verbalized_sparql_query": datasets.Value("string"),
118
- "verbalized_triple": datasets.Value("string"),
119
- "verbalized_type_list": [datasets.Value("string")]
120
- }
121
- ]
122
- }
123
- ),
124
- # If there's a common (input, target) tuple from the features,
125
- # specify them here. They'll be used if as_supervised=True in
126
- # builder.as_dataset
127
- supervised_keys=None,
128
- # Homepage of the dataset for documentation
129
- homepage=_HOMEPAGE,
130
- citation=_CITATION,
131
- )
132
-
133
- def _split_generators(self, dl_manager):
134
- """Returns SplitGenerators."""
135
- # Downloads the data and defines the splits
136
- # dl_manager is a datasets.download.DownloadManager that can be used to
137
- # download and extract URLs
138
- downloaded_files = dl_manager.download_and_extract(_URLS)
139
- train_path = os.path.join(downloaded_files['all'],'csqa_sparql_to_text/train/')
140
- test_path = os.path.join(downloaded_files['all'],'csqa_sparql_to_text/test/')
141
- valid_path = os.path.join(downloaded_files['all'],'csqa_sparql_to_text/valid/')
142
- return [
143
- datasets.SplitGenerator(
144
- name=datasets.Split.TRAIN,
145
- gen_kwargs={"filepath": train_path,
146
- "split": "train"}
147
- ),
148
- datasets.SplitGenerator(
149
- name=datasets.Split.TEST,
150
- gen_kwargs={"filepath": test_path,
151
- "split": "test"}
152
- ),
153
- datasets.SplitGenerator(
154
- name=datasets.Split.VALIDATION,
155
- gen_kwargs={"filepath": valid_path,
156
- "split": "valid"}
157
- ),
158
- ]
159
-
160
- def _generate_examples(self, filepath, split):
161
- """Yields examples."""
162
- # Yields (key, example) tuples from the dataset
163
- def _transform(x):
164
- pattern = {
165
- "id": None,
166
- "ques_type_id": None,
167
- "question-type": "",
168
- "description": "",
169
- "entities_in_utterance": [],
170
- "relations": [],
171
- "type_list": [],
172
- "speaker": "",
173
- "utterance": "",
174
- "all_entities": [],
175
- "active_set": [],
176
- 'sec_ques_sub_type': None,
177
- 'sec_ques_type': None,
178
- 'set_op_choice': None,
179
- 'is_inc': None,
180
- 'count_ques_sub_type': None,
181
- 'count_ques_type': None,
182
- 'is_incomplete': None,
183
- 'inc_ques_type': None,
184
- 'set_op': None,
185
- 'bool_ques_type': None,
186
- 'entities': [],
187
- "clarification_step": None,
188
- "gold_actions": [],
189
- "is_spurious": None,
190
- "masked_verbalized_answer": None,
191
- "parsed_active_set": [],
192
- "sparql_query": None,
193
- "verbalized_all_entities": [],
194
- "verbalized_answer": None,
195
- "verbalized_entities_in_utterance": [],
196
- "verbalized_gold_actions": [],
197
- "verbalized_parsed_active_set": [],
198
- "verbalized_sparql_query": None,
199
- "verbalized_triple": [],
200
- "verbalized_type_list": []
201
- }
202
-
203
- # if "verbalized_triple" in x:
204
- # x["verbalized_triple"] = json.dumps(x["verbalized_triple"])
205
- # for k in ["parsed_active_set", "verbalized_gold_actions", "verbalized_parsed_active_set"]:
206
- # if k in x:
207
- # del x[k]
208
- pattern.update(x)
209
- # if "verbalized_triple" in pattern:
210
- # if type(pattern["verbalized_triple"]) != list:
211
- # print(pattern["verbalized_triple"])
212
- # sys.exit()
213
- return pattern
214
- data_keys = {}
215
- for root, dirs, files in os.walk(filepath):
216
- dialog_id = root.split('/')[-1]
217
- for i,filename in enumerate(files):
218
- sample_id = "%s:%s"%(dialog_id,i)
219
- with open(os.path.join(root,filename),'r') as f:
220
- data = json.load(f)
221
- # print("--")
222
- for x in data:
223
- for k,v in x.items():
224
- if not k in data_keys:
225
- data_keys[k] = type(v)
226
- new_data = list()
227
- for i,_ in enumerate(data):
228
- # if "verbalized_triple" in data[i]:
229
- # print(json.dumps(data[i]["verbalized_triple"], indent=2))
230
- # if i < len(data)-1:
231
- # if "verbalized_triple" in data[i+1]:
232
- # print("i+1", json.dumps(data[i+1]["verbalized_triple"], indent=2))
233
- new_data.append(data[i])
234
- data = [ _transform(x) for x in data]
235
- yield sample_id, {
236
- "id": sample_id,
237
- "turns": data
238
- }
239
-