Removed loading script
Browse files- csqa-sparqltotext.py +0 -239
csqa-sparqltotext.py
DELETED
@@ -1,239 +0,0 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
-
|
4 |
-
import json
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
from typing import Any
|
8 |
-
|
9 |
-
import sys
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
_CITATION = """\
|
14 |
-
@inproceedings{lecorve2022sparql2text,
|
15 |
-
title={Coqar: Question rewriting on coqa},
|
16 |
-
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
|
17 |
-
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
|
18 |
-
year={2022}
|
19 |
-
}
|
20 |
-
"""
|
21 |
-
|
22 |
-
_HOMEPAGE = ""
|
23 |
-
|
24 |
-
_DESCRIPTION = """\
|
25 |
-
Special version of CSQA for the SPARQL-to-Text task
|
26 |
-
"""
|
27 |
-
|
28 |
-
_URLS = {
|
29 |
-
"all": "json/csqa_sparql_to_text.tar.gz"
|
30 |
-
}
|
31 |
-
|
32 |
-
class CSQA(datasets.GeneratorBasedBuilder):
|
33 |
-
"""
|
34 |
-
Complex Sequential Question Answering dataset
|
35 |
-
"""
|
36 |
-
|
37 |
-
VERSION = datasets.Version("1.0.0")
|
38 |
-
|
39 |
-
def _info(self):
|
40 |
-
return datasets.DatasetInfo(
|
41 |
-
# This is the description that will appear on the datasets page.
|
42 |
-
description=_DESCRIPTION,
|
43 |
-
# datasets.features.FeatureConnectors
|
44 |
-
#"active_set"
|
45 |
-
#"all_entities"
|
46 |
-
#"bool_ques_type"
|
47 |
-
#"count_ques_sub_type"
|
48 |
-
#"count_ques_type"
|
49 |
-
#"description"
|
50 |
-
#"entities"
|
51 |
-
#"entities_in_utterance"
|
52 |
-
#"gold_actions"
|
53 |
-
#"inc_ques_type"
|
54 |
-
#"is_inc"
|
55 |
-
#"is_incomplete"
|
56 |
-
#"is_spurious"
|
57 |
-
#"masked_verbalized_answer"
|
58 |
-
#"parsed_active_set"
|
59 |
-
#"ques_type_id"
|
60 |
-
#"question-type"
|
61 |
-
#"relations"
|
62 |
-
#"sec_ques_sub_type"
|
63 |
-
#"sec_ques_type"
|
64 |
-
#"set_op_choice"
|
65 |
-
#"set_op"
|
66 |
-
#"sparql_query"
|
67 |
-
#"speaker"
|
68 |
-
#"type_list"
|
69 |
-
#"utterance"
|
70 |
-
#"utterance"
|
71 |
-
#"verbalized_all_entities"
|
72 |
-
#"verbalized_answer"
|
73 |
-
#"verbalized_entities_in_utterance"
|
74 |
-
#"verbalized_gold_actions"
|
75 |
-
#"verbalized_parsed_active_set"
|
76 |
-
#"verbalized_sparql_query"
|
77 |
-
#"verbalized_triple"
|
78 |
-
#"verbalized_type_list"
|
79 |
-
features=datasets.Features(
|
80 |
-
{
|
81 |
-
"id": datasets.Value("string"),
|
82 |
-
"turns": [
|
83 |
-
{
|
84 |
-
"id": datasets.Value("int64"),
|
85 |
-
"ques_type_id": datasets.Value("int64"),
|
86 |
-
"question-type": datasets.Value("string"),
|
87 |
-
"description": datasets.Value("string"),
|
88 |
-
"entities_in_utterance": [datasets.Value("string")],
|
89 |
-
"relations": [datasets.Value("string")],
|
90 |
-
"type_list": [datasets.Value("string")],
|
91 |
-
"speaker": datasets.Value("string"),
|
92 |
-
"utterance": datasets.Value("string"),
|
93 |
-
"all_entities": [datasets.Value("string")],
|
94 |
-
"active_set": [datasets.Value("string")],
|
95 |
-
'sec_ques_sub_type': datasets.Value("int64"),
|
96 |
-
'sec_ques_type': datasets.Value("int64"),
|
97 |
-
'set_op_choice': datasets.Value("int64"),
|
98 |
-
'is_inc': datasets.Value("int64"),
|
99 |
-
'count_ques_sub_type': datasets.Value("int64"),
|
100 |
-
'count_ques_type': datasets.Value("int64"),
|
101 |
-
'is_incomplete': datasets.Value("int64"),
|
102 |
-
'inc_ques_type': datasets.Value("int64"),
|
103 |
-
'set_op': datasets.Value("int64"),
|
104 |
-
'bool_ques_type': datasets.Value("int64"),
|
105 |
-
'entities': [datasets.Value("string")],
|
106 |
-
"clarification_step": datasets.Value("int64"),
|
107 |
-
"gold_actions": [[datasets.Value("string")]],
|
108 |
-
"is_spurious": datasets.Value("bool"),
|
109 |
-
"masked_verbalized_answer": datasets.Value("string"),
|
110 |
-
"parsed_active_set": [datasets.Value("string")],
|
111 |
-
"sparql_query": datasets.Value("string"),
|
112 |
-
"verbalized_all_entities": [datasets.Value("string")],
|
113 |
-
"verbalized_answer": datasets.Value("string"),
|
114 |
-
"verbalized_entities_in_utterance": [datasets.Value("string")],
|
115 |
-
"verbalized_gold_actions": [[datasets.Value("string")]],
|
116 |
-
"verbalized_parsed_active_set": [datasets.Value("string")],
|
117 |
-
"verbalized_sparql_query": datasets.Value("string"),
|
118 |
-
"verbalized_triple": datasets.Value("string"),
|
119 |
-
"verbalized_type_list": [datasets.Value("string")]
|
120 |
-
}
|
121 |
-
]
|
122 |
-
}
|
123 |
-
),
|
124 |
-
# If there's a common (input, target) tuple from the features,
|
125 |
-
# specify them here. They'll be used if as_supervised=True in
|
126 |
-
# builder.as_dataset
|
127 |
-
supervised_keys=None,
|
128 |
-
# Homepage of the dataset for documentation
|
129 |
-
homepage=_HOMEPAGE,
|
130 |
-
citation=_CITATION,
|
131 |
-
)
|
132 |
-
|
133 |
-
def _split_generators(self, dl_manager):
|
134 |
-
"""Returns SplitGenerators."""
|
135 |
-
# Downloads the data and defines the splits
|
136 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
137 |
-
# download and extract URLs
|
138 |
-
downloaded_files = dl_manager.download_and_extract(_URLS)
|
139 |
-
train_path = os.path.join(downloaded_files['all'],'csqa_sparql_to_text/train/')
|
140 |
-
test_path = os.path.join(downloaded_files['all'],'csqa_sparql_to_text/test/')
|
141 |
-
valid_path = os.path.join(downloaded_files['all'],'csqa_sparql_to_text/valid/')
|
142 |
-
return [
|
143 |
-
datasets.SplitGenerator(
|
144 |
-
name=datasets.Split.TRAIN,
|
145 |
-
gen_kwargs={"filepath": train_path,
|
146 |
-
"split": "train"}
|
147 |
-
),
|
148 |
-
datasets.SplitGenerator(
|
149 |
-
name=datasets.Split.TEST,
|
150 |
-
gen_kwargs={"filepath": test_path,
|
151 |
-
"split": "test"}
|
152 |
-
),
|
153 |
-
datasets.SplitGenerator(
|
154 |
-
name=datasets.Split.VALIDATION,
|
155 |
-
gen_kwargs={"filepath": valid_path,
|
156 |
-
"split": "valid"}
|
157 |
-
),
|
158 |
-
]
|
159 |
-
|
160 |
-
def _generate_examples(self, filepath, split):
|
161 |
-
"""Yields examples."""
|
162 |
-
# Yields (key, example) tuples from the dataset
|
163 |
-
def _transform(x):
|
164 |
-
pattern = {
|
165 |
-
"id": None,
|
166 |
-
"ques_type_id": None,
|
167 |
-
"question-type": "",
|
168 |
-
"description": "",
|
169 |
-
"entities_in_utterance": [],
|
170 |
-
"relations": [],
|
171 |
-
"type_list": [],
|
172 |
-
"speaker": "",
|
173 |
-
"utterance": "",
|
174 |
-
"all_entities": [],
|
175 |
-
"active_set": [],
|
176 |
-
'sec_ques_sub_type': None,
|
177 |
-
'sec_ques_type': None,
|
178 |
-
'set_op_choice': None,
|
179 |
-
'is_inc': None,
|
180 |
-
'count_ques_sub_type': None,
|
181 |
-
'count_ques_type': None,
|
182 |
-
'is_incomplete': None,
|
183 |
-
'inc_ques_type': None,
|
184 |
-
'set_op': None,
|
185 |
-
'bool_ques_type': None,
|
186 |
-
'entities': [],
|
187 |
-
"clarification_step": None,
|
188 |
-
"gold_actions": [],
|
189 |
-
"is_spurious": None,
|
190 |
-
"masked_verbalized_answer": None,
|
191 |
-
"parsed_active_set": [],
|
192 |
-
"sparql_query": None,
|
193 |
-
"verbalized_all_entities": [],
|
194 |
-
"verbalized_answer": None,
|
195 |
-
"verbalized_entities_in_utterance": [],
|
196 |
-
"verbalized_gold_actions": [],
|
197 |
-
"verbalized_parsed_active_set": [],
|
198 |
-
"verbalized_sparql_query": None,
|
199 |
-
"verbalized_triple": [],
|
200 |
-
"verbalized_type_list": []
|
201 |
-
}
|
202 |
-
|
203 |
-
# if "verbalized_triple" in x:
|
204 |
-
# x["verbalized_triple"] = json.dumps(x["verbalized_triple"])
|
205 |
-
# for k in ["parsed_active_set", "verbalized_gold_actions", "verbalized_parsed_active_set"]:
|
206 |
-
# if k in x:
|
207 |
-
# del x[k]
|
208 |
-
pattern.update(x)
|
209 |
-
# if "verbalized_triple" in pattern:
|
210 |
-
# if type(pattern["verbalized_triple"]) != list:
|
211 |
-
# print(pattern["verbalized_triple"])
|
212 |
-
# sys.exit()
|
213 |
-
return pattern
|
214 |
-
data_keys = {}
|
215 |
-
for root, dirs, files in os.walk(filepath):
|
216 |
-
dialog_id = root.split('/')[-1]
|
217 |
-
for i,filename in enumerate(files):
|
218 |
-
sample_id = "%s:%s"%(dialog_id,i)
|
219 |
-
with open(os.path.join(root,filename),'r') as f:
|
220 |
-
data = json.load(f)
|
221 |
-
# print("--")
|
222 |
-
for x in data:
|
223 |
-
for k,v in x.items():
|
224 |
-
if not k in data_keys:
|
225 |
-
data_keys[k] = type(v)
|
226 |
-
new_data = list()
|
227 |
-
for i,_ in enumerate(data):
|
228 |
-
# if "verbalized_triple" in data[i]:
|
229 |
-
# print(json.dumps(data[i]["verbalized_triple"], indent=2))
|
230 |
-
# if i < len(data)-1:
|
231 |
-
# if "verbalized_triple" in data[i+1]:
|
232 |
-
# print("i+1", json.dumps(data[i+1]["verbalized_triple"], indent=2))
|
233 |
-
new_data.append(data[i])
|
234 |
-
data = [ _transform(x) for x in data]
|
235 |
-
yield sample_id, {
|
236 |
-
"id": sample_id,
|
237 |
-
"turns": data
|
238 |
-
}
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|